
Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

The Device Tree: Plug and play for Embedded
Linux

Eli Billauer

December 3rd, 2012

This work is released under Creative Common’s CC0 license version 1.0 or later.
To the extent possible under law, the author has waived all copyright and related
or neighboring rights to this work.

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

1 Introduction

2 Device tree basics

3 Walking through a DTS file

4 Defining a peripheral

5 Summary

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Introduction

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Embedded processors

System on Chip (SoC)

FPGAs

May have the same instruction set, but...

... number of cores, memory size, frequency may vary

... different peripherals on the bus

... different boards

No BIOS to convey this information.

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Sources for hardware information

The kernel command line

The kernel configuration

Hardcoded in the boot sources

Header files

The device tree

The result: See arch/arm/

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Device tree basics

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Device tree forms

The device tree comes in three forms:

A text file (*.dts) – “source”

A binary blob (*.dtb) – “binary blob”

A file system: /proc/device-tree – “runtime”

The blob is loaded into RAM before the kernel kicks off.

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Names and acronyms

Device Tree

Flattened Device Tree (FDT)

Open Firmware (OF)

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Syntax

Curly brackets: Hierarchy (directory)

The hierarchy’s (node) name just before curly bracket

Assignments: Content (file)

Strings and integers: C-style (0x hex notation)

Arrays of integers (“cells”) within <and >

Lists of values separated by commas

C-style comments

C-style labels

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

A sample device tree .dts listing

/dts-v1/;

/ {

#address-cells = <1>;

#size-cells = <1>;

compatible = "xlnx,zynq-zed";

interrupt-parent = <&gic>;

model = "Xillinux for Zedboard";

aliases {

serial0 = &ps7_uart_1;

} ;

chosen {

bootargs = "consoleblank=0 root=/dev/mmcblk0p2 rw rootwait earlyprintk";

linux,stdout-path = "/axi@0/uart@E0001000";

};

cpus {

[... CPU definitions ...]

} ;

ps7_ddr_0: memory@0 {

device_type = "memory";

reg = < 0x0 0x20000000 >;

} ;

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

A sample device tree .dts listing (cont.)

ps7_axi_interconnect_0: axi@0 {

#address-cells = <1>;

#size-cells = <1>;

compatible = "xlnx,ps7-axi-interconnect-1.00.a", "simple-bus";

ranges ;

gic: interrupt-controller@f8f01000 {

#interrupt-cells = < 3 >;

compatible = "arm,cortex-a9-gic";

interrupt-controller ;

reg = < 0xf8f01000 0x1000 >,< 0xf8f00100 0x100 >;

} ;

pl310: pl310-controller@f8f02000 {

arm,data-latency = < 3 2 2 >;

arm,tag-latency = < 2 2 2 >;

cache-level = < 2 >;

cache-unified ;

compatible = "arm,pl310-cache";

interrupts = < 0 34 4 >;

reg = < 0xf8f02000 0x1000 >;

} ;

[... more peripheral definitions ...]

} ;

} ;

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Accessing /proc/device-tree

hexdump -C ’/proc/device-tree/#size-cells’

00000000 00 00 00 01 |....|

00000004

hexdump -C ’/proc/device-tree/axi@0/compatible’

00000000 78 6c 6e 78 2c 70 73 37 2d 61 78 69 2d 69 6e 74 |xlnx,ps7-axi-int|

00000010 65 72 63 6f 6e 6e 65 63 74 2d 31 2e 30 30 2e 61 |erconnect-1.00.a|

00000020 00 73 69 6d 70 6c 65 2d 62 75 73 00 |.simple-bus.|

0000002c

cat ’/proc/device-tree/axi@0/compatible’

xlnx,ps7-axi-interconnect-1.00.asimple-bus

Note the Big Endian representation of the integer!

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Compilation and reverse compilation

The compiler is part of the Linux kernel tree.

Compiles from any to any format
Source to blob:
$ scripts/dtc/dtc -I dts -O dtb -o /path/to/my-tree.dtb /path/to/my-tree.dts

Blob to source:
$ scripts/dtc/dtc -I dtb -O dts -o /path/to/fromdtb.dts /path/to/found_this.dtb

The /proc/device pseudo filesystem can be converted to
source as well

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Walking through a DTS file

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

A starter

/dts-v1/;

/ {

#address-cells = <1>;

#size-cells = <1>;

compatible = "xlnx,zynq-zed";

interrupt-parent = <&gic>;

model = "Xillinux for Zedboard";

aliases {

serial0 = &ps7_uart_1;

} ;

chosen {

bootargs = "consoleblank=0 root=/dev/mmcblk0p2 rw rootwait earlyprintk";

linux,stdout-path = "/axi@0/uart@E0001000";

};

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

CPUs

cpus {

#address-cells = <1>;

#cpus = <0x2>;

#size-cells = <0>;

ps7_cortexa9_0: cpu@0 {

clock-frequency = <666666688>;

compatible = "xlnx,ps7-cortexa9-1.00.a";

d-cache-line-size = <0x20>;

d-cache-size = <0x8000>;

device_type = "cpu";

i-cache-line-size = <0x20>;

i-cache-size = <0x8000>;

model = "ps7_cortexa9,1.00.a";

reg = <0>;

timebase-frequency = <333333344>;

xlnx,cpu-1x-clk-freq-hz = <0x69f6bcb>;

xlnx,cpu-clk-freq-hz = <0x27bc86c0>;

} ;

ps7_cortexa9_1: cpu@1 {

[... repeated, of course ...]

} ;

} ;

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Memory

ps7_ddr_0: memory@0 {

device_type = "memory";

reg = < 0x0 0x20000000 >;

} ;

0x20000000 = 512M

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Peripherals

ps7_axi_interconnect_0: axi@0 {

#address-cells = <1>;

#size-cells = <1>;

compatible = "xlnx,ps7-axi-interconnect-1.00.a", "simple-bus";

ranges ;

gic: interrupt-controller@f8f01000 {

#interrupt-cells = < 3 >;

compatible = "arm,cortex-a9-gic";

interrupt-controller ;

reg = < 0xf8f01000 0x1000 >,< 0xf8f00100 0x100 >;

} ;

pl310: pl310-controller@f8f02000 {

arm,data-latency = < 3 2 2 >;

arm,tag-latency = < 2 2 2 >;

cache-level = < 2 >;

cache-unified ;

compatible = "arm,pl310-cache";

interrupts = < 0 34 4 >;

reg = < 0xf8f02000 0x1000 >;

} ;

[...]

} ;

} ;

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Defining a peripheral

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Its entry in the device tree

xillybus_0: xillybus@50000000 {

compatible = "xlnx,xillybus-1.00.a";

reg = < 0x50000000 0x1000 >;

interrupts = < 0 59 1 >;

interrupt-parent = <&gic>;

xlnx,max-burst-len = <0x10>;

xlnx,native-data-width = <0x20>;

xlnx,slv-awidth = <0x20>;

xlnx,slv-dwidth = <0x20>;

xlnx,use-wstrb = <0x1>;

} ;

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Kernel code: Load me!

static struct of_device_id xillybus_of_match[] __devinitdata = {

{ .compatible = "xlnx,xillybus-1.00.a", },

{}

};

MODULE_DEVICE_TABLE(of, xillybus_of_match);

[...]

static struct platform_driver xillybus_platform_driver = {

.probe = xilly_drv_probe,

.remove = xilly_drv_remove,

.driver = {

.name = "xillybus",

.owner = THIS_MODULE,

.of_match_table = xillybus_of_match,

},

};

platform driver register(&xillybus platform driver) must be called
in the modules initialization function.

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

The probe method

A sanity check. Not clear if it’s really needed:

static int __devinit xilly_drv_probe(struct platform_device *op)

{

const struct of_device_id *match;

match = of_match_device(xillybus_of_match, &op->dev);

if (!match)

return -EINVAL;

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

The probe method (cont.)

Accessing registers:

int rc = 0;

struct resource res;

void *registers;

rc = of_address_to_resource(&op->dev.of_node, 0, &res);

if (rc) {

/* Fail */

}

if (!request_mem_region(res.start, resource_size(&res), "xillybus")) {

/* Fail */

}

registers = of_iomap(op->dev.of_node, 0);

if (!registers) {

/* Fail */

}

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

The probe method (cont.)

Register the interrupt handler:

irq = irq_of_parse_and_map(op->dev.of_node, 0);

rc = request_irq(irq, xillybus_isr, 0, "xillybus", op->dev);

This relates to:

interrupts = < 0 59 1 >;

interrupt-parent = <&gic>;

in the device tree. The numbers’ meaning is driver dependent (and
sometimes completely off-beat even if it works).

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

The probe method (cont.)

Grab this piece of data from the device tree:

xlnx,slv-awidth = <0x20>;

Kernel code:

void *ptr;

int value;

ptr = of_get_property(op->dev.of_node, "xlnx,slv-awidth", NULL);

if (!ptr) {

/* Couldn’t find the entry */

}

value = be32_to_cpup(ptr);

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Summary

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Conclusions

It’s simple!

It makes sense

It’s useful

It’s a winner

but...

Nobody has cared to explain how it works

Therefore it’s messy

A lot of useless stuff nobody dares to delete

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Sources

http://xillybus.com/tutorials/device-tree-zynq-1
http://devicetree.org/Device_Tree_Usage

include/linux/of.h (and of_*.h) in the kernel tree

Eli Billauer The Device Tree: Plug and play for Embedded Linux

Introduction
Device tree basics

Walking through a DTS file
Defining a peripheral

Summary

Thank you!

Questions?

Eli Billauer The Device Tree: Plug and play for Embedded Linux

	Introduction
	Device tree basics
	Walking through a DTS file
	Defining a peripheral
	Summary

