
Linux Systems Training

GBdirect Limited
27 Park Drive

Bradford
West Yorkshire

BD9 4DS
tel: +44 (0)1274 772277

info@gbdirect.co.uk

September 17, 2003

Contents

1 Linux Overview 1
1.1 Linux Background . 2
1.2 Unix Foundations . 3
1.3 Unix Standards . 4
1.4 Features of Linux & Unix . 5
1.5 Linux — The Kernel of a System . 6
1.6 GNU/Linux Distributions . 7
1.7 The Many Faces of a GNU/Linux System 8
1.8 The Filesystem . 9
1.9 Tasks/Processes . 10
1.10 Process Communication . 11
1.11 The Bourne Again Shell (bash) . 12
1.12 Interacting with a Linux ‘Terminal’ . 13
1.13 Logging in to the System . 14
1.14 Changing Passwords . 15
1.15 Control Characters . 16
1.16 Software Tools: The UNIX Philosophy . 17
1.17 Re-directing I/O to and from Files . 18
1.18 Pipes & Tools . 19
1.19 Programmers Love Linux . 20
1.20 Running Commands . 21
1.21 Documentation . 22
1.22 Using the man pages (On-Line Manual) . 23
1.23 Overview Exercises . 24
1.24 Overview Solutions . 27

2 The Linux Filesystem 29
Objectives . 29

2.1 Filesystem Overview . 30
2.2 Files . 31
2.3 Directories . 32
2.4 Directory Hierarchy . 33
2.5 Pathnames . 34
2.6 Current Directory . 35
2.7 Dot (.) and DotDot(..) . 36
2.8 Moving and Copying Files . 37
2.9 Removing Files . 38
2.10 Operations on Directories . 39
2.11 Inodes . 40
2.12 Inodes (continued) . 41
2.13 Links . 42
2.14 Hard links . 43

i

CONTENTS ii

2.15 Soft links . 44
2.16 Access Control and UID . 45
2.17 Categories of Access Control . 46
2.18 Access Control - Example . 47
2.19 Changing Access Permission: chmod . 48
2.20 chmod symbolically . 49
2.21 chmod numerically . 50
2.22 umask . 51
2.23 Special Files - /dev . 52
2.24 Special Files - /proc . 53
2.25 Filesystem Structure . 54
2.26 /etc/fstab - Example . 55
2.27 Mounting Additional Volumes . 56
2.28 Mounting shared filesystems . 57
2.29 Summary . 58
2.30 Filesystem Exercises . 59
2.31 Filesystem Solutions . 60

3 Shell Command Line Interface 62
Objectives . 62

3.1 Introduction . 63
3.2 Getting around the command line . 64
3.3 History . 65
3.4 Plumbing . 66
3.5 Output Redirection . 67
3.6 Input Redirection . 68
3.7 Combining Redirection . 69
3.8 Pipelines . 70
3.9 Background Processes . 71
3.10 Background Processes (continued) . 72
3.11 Background Processes and nohup . 73
3.12 Command Grouping and Sub-shells . 74
3.13 Process Management . 75
3.14 Signals . 76
3.15 Background Processes: top . 77
3.16 Filename Generation . 78
3.17 Quoting Mechanisms . 79
3.18 Shell built-in commands . 80
3.19 Command Line Exercises . 81
3.20 Command Line Solutions . 83

4 Basic Linux Tools 84
Objectives . 84

4.1 Introduction . 85
4.2 Using Tools . 86
4.3 The On-Line Manual (man) . 87
4.4 Finding Files the Long Way (find) . 88
4.5 Locate Files in a Filesystem DB (locate) 89
4.6 View and Concatenate Files (cat) . 90
4.7 View Large Files & Output (less) . 91
4.8 Viewing Parts of Files (head and tail) . 92
4.9 Listing File Information (ls) . 93
4.10 File Classification (file) . 94
4.11 Count Words, Lines, Characters (wc) . 95

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

CONTENTS iii

4.12 Differences Between Files (diff) . 96
4.13 Compare Binary Files (cmp) . 98
4.14 Regular Expression Searches (grep) . 99
4.15 Sort and Merge Files (sort) . 100
4.16 sort — Examples . 101
4.17 Display Unique Lines (uniq) . 102
4.18 Split Files (split) . 103
4.19 Splitting Files by Context (csplit) . 104
4.20 Store and Retrieve Archives (tar) . 105
4.21 Compression Utilities (gzip) . 106
4.22 Translating Characters (tr) . 107
4.23 Examples of tr Usage . 108
4.24 Text Manipulation (sed) . 109
4.25 Text Manipulation (awk) . 110
4.26 Linux Printing . 111
4.27 Printing documents . 112
4.28 Main Printing Tools . 113
4.29 Using lpr . 114
4.30 Using lpq . 115
4.31 Using lprm . 116
4.32 Basic Tools Exercises . 117
4.33 Basic Tools Solutions . 118

5 Introduction to Editing With vi 120
Objectives . 120

5.1 Text editors under Linux . 121
5.2 vi and your terminal . 122
5.3 vi screen layout . 123
5.4 Opening files with vi . 124
5.5 vi Modes . 125
5.6 Saving, changing file and quitting . 126
5.7 Moving around in command mode . 127
5.8 Numeric Prefixes . 128
5.9 Further Movement . 129
5.10 Further Movement - Example . 130
5.11 Movement by lines . 131
5.12 Movement by lines - Examples . 132
5.13 Inserting text . 133
5.14 i command . 134
5.15 Multiple Insertion . 135
5.16 Deleting Text . 136
5.17 Changing Text . 137
5.18 Copy and Paste . 138
5.19 Finding your place . 139
5.20 Miscellaneous Commands . 140
5.21 vi Exercises . 141
5.22 vi Solutions . 144

6 Basic X-Windows 147
Objectives . 147

6.1 What X-Windows Is . 148
6.2 X Needs Window Managers . 149
6.3 Window Managers Are Applications . 150
6.4 Desktop Environments . 151

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

CONTENTS iv

6.5 Starting X . 152
6.6 Stopping X . 153
6.7 Running Shells (Xterms) Under X . 154
6.8 Running Applications from an xterm . 155
6.9 Running Applications from the window manager 156
6.10 Configuring X . 157
6.11 Basic X Hardware Configuration . 158
6.12 Basic X Software Configuration . 159
6.13 Networked X - The Client-Server Relationship 160
6.14 Principles of Running Remote X Apps . 161
6.15 How to Run Remote X Apps . 162
6.16 Authentication . 163
6.17 Better Authentication . 164
6.18 Basic X Exercises . 165

7 Linux and Shared File Systems 167
Objectives . 167

7.1 Samba . 168
7.2 Samba Installation . 169
7.3 Samba Basics . 170
7.4 Access to Files and Printers . 171
7.5 Testing Samba . 172
7.6 Smbclient . 173
7.7 Samba configuration File . 174
7.8 Testing Samba . 175

Notes on Testing Samba . 175
7.9 NFS (Network File System) . 176

Basics . 176
7.10 NFS Basics . . . continued . 177
7.11 Exporting File Systems . 178
7.12 Viewing exports . 179
7.13 Importing File Systems . 180
7.14 Shared Filesystem Exercises . 181

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Module 1

Linux Overview

• Background

• Basics

• Hands-on getting started

1

Linux Overview v0.2 2

1.1 Linux Background

• Linux is a free-of-charge implementation of Unix

• Unix is the workhorse of large corporate
computing

– Two principal technologies dominate

∗ Unix
∗ IBM AS/400

– Extremely well-known inside the industry

– Almost a secret outside

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 3

1.2 Unix Foundations

• Developed by AT&T research group

• As a demonstrator of how to do operating
systems right

• Revolutionary and ground-breaking in 1976

• Considered one of the best-structured OSs ever

• Pioneered many things still done less well in
commercial OSs

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 4

1.3 Unix Standards

• UNIX is a trademark (owned by the Open Group)

• Systems must pass certification to use name

• Linux is not a funded operation

– Believed to conform to necessary standards 1

– Could pass certification

– Nobody bothers

– Hence the trademark not used

1Informed observers suggest Linux is actually more POSIX compliant than
most commercial UNIX

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 5

1.4 Features of Linux & Unix

• Component-based systems

• Very popular with technically skilled

• Not ‘solution’ oriented

• Building blocks not the building

• Highly network-aware

• Robust, powerful, reliable

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 6

1.5 Linux — The Kernel of a System

• What is called Linux is actually a collection of
components from many sources

– freely copiable, under ‘open source’ licences

• Linux is, strictly, just the kernel which provides:

– A common interface between user process
and hardware

– Minimal functions to user applications, i.e.
system calls

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 7

1.6 GNU/Linux Distributions

• Utility programs provide most of the OS functions

• 100s of GNU utilities/apps come from the FSF 2

• Other key components (Samba, Apache, etc) are
bundled, but not intrinisically Linux or GNU

• Commercial or semi-commercial distributions:

– RedHat, Suse, Debian, Caldera, etc

2GNU stands for ‘Gnu’s Not UNIX’, a project to build a 100% UNIX-
compatible system without any AT&T proprietary code. FSF stands for the
Free Software Foundation, which sponsors and maintains the GNU project.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 8

1.7 The Many Faces of a GNU/Linux System

• The user may see up to five aspects of Linux:

– the filesystem

– processes

– the shell

– the X windowing system

– Inter-Process Communication (IPC)

• The system is very highly configurable

• Different users may experience totally different
views of the same system

• Multiple simultaneous users are normal

– Linux is designed from the ground up as a
multi-user system, NOT a ‘personal’ system

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 9

1.8 The Filesystem

• The filesystem contains all data in the system

• A name in the filesystem can refer to:

– a data file, which can be:

∗ a plain file
∗ a directory

– a device (disk, tape etc.)

– internal memory

– OS information (the proc system)

• Directories are groups of files

• Directories are grouped in a hierarchical tree:

• Files are fully specified with their pathname

• An original Unix structure; copied by most OSs

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 10

1.9 Tasks/Processes

• A program is an executable object, stored in a file

• A process is an executing object, i.e. 3

– an instance of a program currently being run

• Existing can processes ‘fork’ to create other
processes

– the only way to make new processes

• 1 user may run multiple copies of same program

• Multiple users may run single/multiple copies

• System tracks ownership and permission

3Processes are often called tasks, as in ‘multi-tasking’

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 11

1.10 Process Communication

• Processes may need to co-operate by

– sharing files

– signalling events

– direct transfer of data

– pipelines (data streams)

– synchronising with each other

• Linux provides facilities for:

– signals

– shared memory

– pipes, both named and unnamed

– semaphores

– and others

• Processes may use network connections for
communication, permitting client-server model

– Common for shared services like printing

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 12

1.11 The Bourne Again Shell (bash)

• A shell is a program that you interact with

• Can be any program, but is normally a command
interpreter

• A command interpreter is usually started when
you log in (but this is just one way)

• The ‘standard’ Linux command interpreter is a
Bourne shell look-alike called bash 4

• The command line syntax provided by bash
enables manipulation of files & processes

• The command-line frightens beginners but is the
preferred home of the skilled

4Bash has more functions than true Bourne shells; incorporating most of the
innovations added by the C and Korn shells. Bash functions and flags differ
between implementations of UNIX and Linux. The version of bash in current
Linux releases tends to be the most fully functional Bourne shell around.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 13

1.12 Interacting with a Linux ‘Terminal’

• Linux can support any number of ‘terminal’ types

i.e. input-output devices like monitor &
keyboard combinations

• Most will use the console or a windowed
terminal, but if not:

– Linux usually keeps a database of terminal
capabilities in /etc/termcap 5

– If your terminal type is not recorded in
/etc/termcap, you’ll have problems running
certain programs e.g.

∗ cursor driven apps (top, linuxconf, etc)

– The environmental variable TERM tells
programs what terminal type you are using

5AT&T flavours of UNIX use /usr/lib/terminfo to store the same infor-
mation and Linux can, if necessary.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 14

1.13 Logging in to the System

• To login you need to give:

– a login name

– a password

• Your shell starts automatically after login

• If it’s a command interpreter, the first thing you
see is a prompt

• The default prompt for bash is a dollar sign ($) 6

• Alternative login procedures exist, you might:

– see the X window system start up

– log in via a windowed terminal server

• The basic approach on a PC is to use the
keyboard and monitor as a dumb terminal

6The dollar sign is actually the default for a normal user. The super-user
usually has a hash sign (#) as their prompt. Individuals can, if they so wish,
customise every aspect of the prompt’s appearance. For example, several
default setups put your username, hostname, and current directory in square
brackets before the prompt character.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 15

1.14 Changing Passwords

• Passwords are critical elements of security

• Set and modified by the passwd command

• If you already have a password, passwd asks you
to confirm it before allowing any change

– Superuser may change password for any user

• passwd handles typos, by asking you to type the
new password twice

• Linux versions of passwd discourage you from
choosing bad passwords 7

• Example of use (with existing password):

$ passwd
Changing password for andy
Old password:
New password:
Retype new password:
$

• Neither existing nor changed passwords are
shown on the screen

7Linux does not like small or simple passwords, especially dictionary words.
It prefers 8 or more letters in upper and lower case, with numbers, punctu-
ation marks, etc, but some distributions will accept poor passwords if you
insist. Some implementations of Linux andUNIX will actively prevent you
choosing bad passwords. Others will limit you to 8-character passwords to
maintain compatibility across multi-platform networks.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 16

1.15 Control Characters

• Linux ignores commands until you hit <RETURN>

• Several special keystrokes are recognised

• The following are usually pre-set, but can be
changed by stty:

NAME ACTION KEYSTROKE
KILL Cancel an entire line <CTRL>x
INTERRUPT Break-in <CTRL>c
QUIT Break-in with core dump <CTRL>\
SUSPEND Suspend program <CTRL>z
ERASE Rub out the last character <BACKSPACE>
EOF Generate end-of-file <CTRL>d

• Stop running programs with (<CTRL>c)

• Start and stop data flow to the screen using
<CTRL>s and <CTRL>q respectively

– paging utilities (e.g. more, or less) are better

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 17

1.16 Software Tools: The UNIX Philosophy

• True UNIX-like systems treat programs as tools

– Each tool should:

∗ Do just one thing well
∗ Be generic (untied to specific applications)

– For new jobs, build new tools

– (Re-)combine, don’t complicate old tools

• Linux can do this because it has:

– two simple objects:

∗ the file
∗ the process

– simple methods of connecting:

∗ processes to files
∗ processes to processes

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 18

1.17 Re-directing I/O to and from Files

• Most processes will take input from the shell and
output to the screen

• Both input and output streams can be re-directed
to/from files

• Output to a file (creating or overwriting):

$ df > my-system.txt

• Appending output to a file:

$ who >> my-system.txt

• Take input from one file, output to another:

$ sort < /etc/passwd > passwd.sorted

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 19

1.18 Pipes & Tools

• Linux tools act as filters:

– taking data from input streams, modifying it,
sending it elsewhere

– expecting data to come from other tools

– producing output which any other tool can
process, e.g. ASCII text

• One tool’s output is connected to another’s input:

– Indirectly, via a file created by the first tool

– Directly, via a pipe or pipeline

• E.g. to page through a reverse-sorted version of
your password file on screen:

$ cat /etc/passwd | sort -r | less

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 20

1.19 Programmers Love Linux

• Hierarchical Filestore

• Extensive set of powerful tools

– for software production, admin and support

• A common system interface

– only one set of procedures to learn

• Processes interface with anonymous files

– programs output to files or devices identically

• Modular architecture provides for a completely
customised OS, e.g.

– An OS dedicated solely to graphics rendering

– A general-purpose system on one floppy

• Flexible user interface allows for uniquely
customised programming environments

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 21

1.20 Running Commands

• Commands

– are just tools/utilities run from a shell

• File and Path Names

– To execute any command type its filename

– Without a pathname, the shell searches a
standard list of directories to find an
executable file with the given filename

– This list is the search path

∗ defined by the environmental variable PATH
∗ customizable by individual users

• Syntax

– Command name, optional arguments,
filename arguments

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 22

1.21 Documentation

• Copious, but fragmented and/or duplicated

Programmer’s Manual
/usr/man

The classic ‘man pages’, first stop for skilled users,
worth learning

info pages hypertext browsable texts, often identical or updated
versions of man pages

/usr/doc/program-name ascii/html docs installed with the named program
Howtos Tutorials on Linux-related topics, available on-line if

installed (usually in /usr/doc)
www Recently-released programs are usually documented

on authorised web sites, many (including older tools)
are documented by third-party sites

Table 1.1: Sources of Linux Documentation

• Linux manuals usually have these sections:

1. User Commands

2. System calls

3. Subroutines (inc library routines)

4. Devices (inc network interfaces)

5. File Formats

6. Games

7. Miscellaneous

8. System Administration

9. New (very big in Linux)

• The apropos command word searches the
description line in man pages. Thus:

apropos printer

will find man pages relating to printers, e.g.

lp (4) - line printer devices
lpd (8) - line printer spooler daemon
lprm (1) - remove jobs from the line printer spooling queue

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 23

1.22 Using the man pages (On-Line Manual)

• Use man to see man pages on a named
command, e.g

$ man date

• The result should be something like:

DATE(1)
NAME date - print or set the system date and time
SYNOPSIS
date [-u] [-d datestr] [-s datestr] [--utc]
[--universal] [--date=datestr] [--set=datestr]
[--help] [--version] [+FORMAT] [MMDDhhmm[[CC]YY][.ss]]

• Square brackets surround optional arguments

ls [-abcdfgiklmnpqrstuxABCFGLNQRSUX1]

• DATE(1) Shows page is in manual section 1

• To view a page from a certain section use

$ man -S section-number command-name

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 24

1.23 Overview Exercises

1. Logging in

(a) Practice logging in by typing your username and password in response to the
Login: and Password: prompts, e.g. 8

Login: mikeb
Password:
$
Once you have logged in, the bash prompt ($) is printed; indicating the shell is
ready to take commands.

(b) Log out, by typing exit at the $ prompt. You should get a new Login: prompt,
at which you can login again.

2. Changing password

(a) Set yourself a new password using the passwd command. Run the command by
typing passwd, followed by a <RETURN> .

3. Navigating Man Pages

(a) Type man man to open the man page which details how to use the man command

(b) Press the h (help) key, which opens a “Summary of Less Commands”, including
all the keystrokes you need to navigate a man page

(c) Make sure you can quit this page (by typing q) and quit the man page (by typing
q again). When you get back to the shell prompt, repeat the first 2 steps to open
the “Summary of Less Commands” from the man man page.

(d) Use the “Summary of Less Commands” to make sure you know how to do the
following bits of navigation inside a man page:

i. Move to the top and bottom of the man page
ii. Move up and down one screen of text
iii. Move up and down one line of text
iv. Search forward for a pattern (e.g. a word)
v. Search backwards for a pattern

vi. Repeat a forward pattern search using one key
vii. Repeat a backward pattern search using one key
viii. Move to a specific line number

(e) With a partner, test each other on how well you can navigate the man man page,
e.g. set each other target locations or words to go to.

4. Invoking the Right Man Pages

(a) Using the man man page, find the command string you need to use to get the
following:

i. A list of man pages whose description lines contain details about the
‘whatis’ database

8A <RETURN> is required after each input, to tell the shell that you have finished typing and it should
start processing your request. Note that the password is not displayed on the screen; to keep it secret

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 25

ii. A list of man pages containing the string ‘cdrom’ 9

iii. A list of man pages from a specific section (e.g. 1) of the manual, whose
description lines contain ‘print’

(b) Practice using these flags to find and view man pages which deal with computer
keywords your partner sets for you (and vice versa), e.g.

i. bitmap formats like jpg, gif, xpm, bmp
ii. communications concepts like modem, serial, telnet, ethernet, pcmcia, ppp
iii. filesystems like NFS, ext2, FAT, vfat, msdos, samba

5. Finding Out About Your System and Users

(a) Type the following commands. Identify what each of them tells you about your
system.

i. $ whoami
ii. $ who am i
iii. $ users
iv. $ who
v. $ w

vi. $ date
vii. $ cal 8 1999
viii. $ cal 9 1752 10

ix. $ df
x. $ which man
xi. $ type man
xii. $ whereis less
xiii. $ help cd
xiv. $ time sleep 2

(b) Use the appropriate man page, to check that you have interpreted the screen
output correctly

6. Creating New Files

(a) Try creating a new empty file in your home directory using the touch command,
e.g.
$ touch filename

(b) Get the file details on filename using this command:
$ ls -l filename

(c) Wait 1 minute, then repeat the previous two steps, i.e.
$ touch filename
$ ls -l filename

i. Which of the file details have changed?
ii. What does this tell you about the purpose of touch? Check the man page if

you are unsure.

(d) i. Create a new file containing the output from the df command, using
re-direction, e.g.
$ df > diskspace

9Actually running this sort of search can take a long time, given that many systems contain over 500
man pages, some of which are very long.
10You should notice something very strange about the output from this string. The cal utility is per-
fectly functional, so what’s wrong?

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 26

ii. Ask a partner to create new files, with appropriate filenames, containing
output from the system information commands listed above.

7. Appending information to files

(a) With a partner, choose several of the system information commands whose
outputs may have changed since you completed the previous question. Practice
appending the updated information to the file which contains the earlier output.

(b) Create a file containing output from w, then append the output from date to it,
followed by a update from w, i.e. time-stamp the update.

8. Using Simple Pipes

(a) Pipe the output from the who through the sort command to reverse its order

(b) Sort your /etc/passwd file alphabetically and send the output to a new file
passwd.sorted

(c)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 27

1.24 Overview Solutions

1. Logging in

(a) N/A — it works or it doesn’t.

(b) N/A — it works or it doesn’t.

2. Changing password

(a) N/A — Responses will vary from system to system, depending on whether or
how good password practice is enforced.

3. Navigating Man Pages

(a) N/A

(b) N/A — It is possible that some Linux distributions won’t use less to display man
pages. If that is the case, try to find out how you navigate under that setup and
answer the same questions about it.

(c) N/A

(d) Keystrokes for basic man page navigation:

Instruction Keystroke(s)

Top of man page g < ESC-<
Bottom of man page G > ESC->
Forward one screen f �F �V SPACE
Backward one screen b �B ESC-v
Up one line y �Y k �K �P
Down one line e �E j �N RETURN
pattern Search forward /pattern
pattern Search backward ?pattern
Repeat pattern Search forward n
Repeat pattern Search backward N
Move to nth line ng

Table 1.2: Keystrokes for basic man page navigation

N.B. Several different keystrokes can be used for the same movement. This is
common in UNIX tools designed to operate from any keyboard. less always has a
single key method. Multi-key methods are shown without spaces between them.

4. Invoking the Right Man Pages

(a) i. $ man -k whatis
or, slightly differently:
$ man -f whatis

ii. $ man -K cdrom
iii. $ man -S1 print

(b) Practice using these flags to find and view man pages which deal with computer
keywords your partner sets for you (and vice versa), e.g.

i. e.g. $ man -K jpg
ii. e.g. $ man -K modem
iii. e.g. $ man -K NFS

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux Overview v0.2 28

Command string Output

$ whoami Your username
$ who am i Your username plus machine(s) and terminal you

are on
$ users Usernames of currently logged on users
$ who Who is logged on, when and where
$ w Who’s logged on, when, where, what process and

what system resources they are using
$ date Current date and time, can set date/time
$ cal 8 1999 Calendar for August 1999
$ cal 9 1752 Calendar for September 1752. Strange because 12

days were ‘lost’ in the transition from Gregorian to
Julian calendars

$ df Disk free, i.e. summarises disk usage
$ which man Full file and path name for the man executable file
$ type man Much the same as which man
$ whereis less Locates the less executable and its man page
$ help cd Very brief help notes on the cd command. N.B. help

only works on very few built-in commands
$ time sleep 2 The sleep command puts itself to sleep for 2

seconds. The time command then times the whole
process and provides other data on the operation of
the sleep command

Table 1.3: Output from basic system information commands

5. Finding Out About Your System and Users

(a) The listed command strings tell you about:

(b) See Table 1.3

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Module 2

The Linux Filesystem

Objectives

• After completing this section, you will be able to:

– Understand a typical Linux filesystem

– Navigate the file hierarchy

– Manipulate files and directories

– Handle access control

– Deal with ‘special files’ and links

29

The Linux Filesystem v0.2 30

2.1 Filesystem Overview

• Linux uses ext2 as its native filesystem

– Also supports many other types

• All data stored on a Linux system is a file

• File names under ext2 are 1 to 255 characters
long

– Only / and nul are disallowed

• Non-native filesystems have different features

• Ext2 sees only two basic types of files:

– directories

– files

• Other specialised types exist (FIFOs, and
‘special files’), these are covered later

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 31

2.2 Files

• Linux imposes no structure on files

• All files are accessible at the byte level

• Individual files have a maximum size of around
2Gb (in an ext2 filesystem)

• They have a minimum size of 0 bytes

• Files can be extended after creation

• Filename extensions such as .exe and .bat are
unnecessary

• Executable files are simply marked as such
using file permissions (see later)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 32

2.3 Directories

• Directories are files that list other files

– Can be normal files or directories

– Enables a hierarchy to be built

• Each directory entry consists of two parts: a file
name and an inode number
(An inode is more or less a pointer to a file, explained later)

Filename Inode number
. 512
.. 500
bin 17324
basic_linux.tex 24567

• The topmost directory is always called /

– Called the fileystem ‘root’

• Directory information can only be changed by
Linux itself

– Ensures a proper structure is maintained

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 33

2.4 Directory Hierarchy

• By tradition several directories have specialised
rôles

/bin executable commands
/sbin executable commands regarding

important system functions
/etc system configuration files
/lib shared libraries
/dev peripheral devices
/tmp temporary files
/mnt commonly used to mount external

devices
/var Miscellaneous odds and ends such

as logs, status and lock files and
spooling files

/proc system information
/usr/bin further executable files
/usr/sbin further system-important executable

files
/usr/lib further libraries

• User-installed programs typically go under the
/usr/local hierachy

• /mnt is not always present, it is merely a
convenience to place all ‘mounted’ devices under
one place.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 34

2.5 Pathnames

• Files can be referred to by relative or absolute
pathnames

• Absolute pathnames begin with /

/usr/sbin/httpd
/usr/local/bin/safe-mysqld

• The absolute pathname refers to one file only

• A relative pathname does not begin with / and
describes the path from the current directory to
find a file, e.g,

sbin/httpd
bin/safe-mysqld

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 35

2.6 Current Directory

• When you log in your shell is placed in your
home directory

– Typically /home/username1

• ~ is a synonym for /home/username

• cd changes your current directory

– Typing cd path changes your current directory
to path

• path can be absolute or relative

• Without arguments cd changes to your home
directory

• pwd tells you the current directory

1Home directories are sometimes under /usr/username on some older systems

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 36

2.7 Dot (.) and DotDot(..)

• Directories always contain two entries "." and ".."

. Current directory

.. Parent directory

• Used for relative pathnames and navigation

• Example:
$ mv file
..

Move file to the parent directory

$ du . Display space used by files in
current cdirectory and below

$ du .. Display space used by files in
parent directory and below

$./a.out Execute the file a.out in the
current directory

• This last row above shows forced execution of a
particular file

– If we had simply typed a.out then our PATH
environment variable would be used to search
for the file

– It may execute another a.out instead of the
one we actually want

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 37

2.8 Moving and Copying Files

• The mv command is used to move files:

mv [options] source dest
mv [options] source... directory

• The cp command is used to copy files:

cp [options] source dest
cp [options] source... directory

• Full details of applicable options and usage can
be found by typing man mv or man cp

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 38

2.9 Removing Files

• Files are removed using the rm command:

rm [options] file

• Most notable among the options are :

rm -f Force removal, without confirmation
rm -r Recursively delete files

• Again, full details are available by typing man rm

• Removing a file is not considered an operation
on the file

– It is an operation on the directory

– Filenames are merely links (Explained in the

coming sections)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 39

2.10 Operations on Directories

mkdir Create a new directory
rmdir Remove a directory
ls List the contents of a directory

• These commands can take many arguments

• mkdir can be told to create the whole pathname
of directories if they don’t exist, e.g.

$ mkdir -p /home/lee/new1/test/directory

Will create the directories
/home/lee/new1 and /home/lee/new1/test as
well as /home/lee/new1/test/directory
if they don’t already exist

• ls arguments control what info is shown and how
it’s sorted

– Some are explained later, consult man ls for
full details

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 40

2.11 Inodes

• Each file is represented by an inode2

• An inode contains information about:

– File type (ordinary, directory, FIFO, block
device etc.)

– Owner ID (to which user does the file belong)

– Size (in bytes)

– Access, creation, and modification times

– Group ID (to which group does the file belong)

– File permissions

– Mapping of the file contents (data sectors)

• Inode layout and location varies with filesystem
type

2The term inode was invented by Dennis Ritchie of AT&T. He admits to forgetting why he chose that
name.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 41

2.12 Inodes (continued)

• Contains an entry for every file in the directory

• ls -i displays inode numbers of entries, e.g.

200808 Ext2fs-0.1-14.html 542726 include
200795 Ext2fs-0.1-2.html 188447 info
200797 Ext2fs-0.1-4.html 333831 ldap
200802 Ext2fs-0.1-8.html 329729 man
200803 Ext2fs-0.1-9.html 278533 misc
200793 Ext2fs-0.1.html 428042 nsmail
204802 systemprogramming

• stat prints the inode contents for files inc.
permissions, size, links, access times etc.

$ stat /home/lee
File: "/home/lee"
Size: 4096 Filetype: Directory
Mode: (0755/drwxr-xr-x) Uid:(504/lee) Gid:(502/lee)
Device: 3,0 Inode: 200705 Links: 30
Access: Thu May 27 10:54:55 1999(00000.00:01:43)
Modify: Thu May 27 10:44:41 1999(00000.00:11:57)
Change: Thu May 27 10:44:41 1999(00000.00:11:57)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 42

2.13 Links

• More than one filename may refer to an inode

– These file names are links to the file

• ln creates links to files

– Creates hard links by default

– ln -s creates symbolic or soft links

• Erasing a file simply removes its directory entry

– Only when all entries for a file have been
removed is the file lost

• Crucially : A filename is not the file

– The inode is the file

– All names are simply links (references) to the
inode

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 43

2.14 Hard links

• A hard link is merely a directory entry with the
relevant inode number.

• Consider the following

– We start with :
$ ls -li
428175 -rw-rw-r-- ... 4 May 26 13:18 test

– We create a hard link :
$ ln test hl
$ ls -li
428175 -rw-rw-r-- ... 4 May 26 13:18 hl
428175 -rw-rw-r-- ... 4 May 26 13:18 test

• N.B. Hard links cannot cross filesystems

• Inode numbers are filesystem specific

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 44

2.15 Soft links

• Soft links store the pathname of the linked file

• This means they can cross filesystems

• Adding a soft link :

$ ln -s test sl
$ ls -li
428175 -rw-rw-r-- ... 4 May 26 13:18 hl
428176 lrwxrwxrwx ... 4 May 26 13:19 sl -> test
428175 -rw-rw-r-- ... 4 May 26 13:18 test

• If we replace the test file with another then the
symbolic link still works, the hard one still points
to the old file!

$ mv ../test2 test
$ ls -li
428175 -rw-rw-r-- ... 5 May 26 13:45 hl
428176 lrwxrwxrwx ... 4 May 26 13:19 sl -> test
428178 -rw-rw-r-- ... 15 May 26 13:47 test

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 45

2.16 Access Control and UID

• File access can be limited to specific users

• Super user(s) bypass access control

• Access control is set by user and group ID

• Each user has a user-id (UID) and one or more
group-ids(GIDs)

• Processes have an associated UID and GID

– Inherited from the user who created the
process

• They can however can be changed:

– Processes are known as set-user ID (setuid) if
they set their user ID

– or set-group ID (setgid) if they set the group ID

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 46

2.17 Categories of Access Control

• There are three categories of access

read r
write w
execute x

• These may be specified for three sets of users :

– User

– Group

– Everyone

• ls -l shows the access permissions, e.g.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 47

2.18 Access Control - Example

$ ls -l
drwxrwxr-x 4 www www ..
-rw-rw-r-- 1 www www x_windows.tex
lrwxrwxrwx 1 lee lee img -> ../linux/img/
-rw-rw-r-- 1 lee lee test.log

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 48

2.19 Changing Access Permission: chmod

• Only the owner of a file (or the super-user) may
alter its access permissions

• chmod changes access permissions

– Works in two ways, symbolically or
numerically

– Symbolically is easier to remember (for most)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 49

2.20 chmod symbolically

• Select who you want to change permissions for
(u=owner, g=group, o=others, a=all)

• Decide whether you want to grant a
permission(+), remove(-), or set(=) it

• Take the permission that you want to change
(r=read, w=write, x=execute)

• Example :

$ chmod gu+w filename

Adds write permission for owner and group

• You can make several changes by separating the
settings with commas, e.g.

$ chmod a-w,go=rw filename

Removes write permission for all, then grants it
for the owner and group

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 50

2.21 chmod numerically

• Once you know this it is often quicker

• A number represents each permission type

4 read permission
2 write permission
1 execute permission

• Add up the permission numbers you want for
each user group (owner, group, all) and supply
these to chmod

• Example:

$ chmod 755 filename

grants all permissions to the owner (4+2+1), and
read and execute (4+1) to group and all others

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 51

2.22 umask

• Files begin with a default access setting

– Specified by a user’s umask setting

• This only works numerically

• Unlike chmod, specified permissions are turned
off

• With a umask setting of 000 files are created with
permissions rw-rw-rw- (666)

• Standard default umask is 022 which means files
are typically created rw-r�r� (644)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 52

2.23 Special Files - /dev

• Files under /dev typically represent devices
attached to your computer

• Programs can open and close them and read
from and write to them - as with regular files

• Kernel code handles exactly how these work

• Two types

– Block - Disk drives, tape drives, CDROMs

– Character - Printers, modems, etc.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 53

2.24 Special Files - /proc

• The section of the filesystem called /proc
doesn’t contain real files

• It contains system status information

• For example:

Location Information
/proc/[number] On specific running processes. See

man proc for details
/proc/meminfo How much memory is in your system

and how much is being used
/proc/cpuinfo What CPU(s) you are currently using
/proc/filesystems Filesystems your kernel supports
/proc/kcore An image of your physical memory
/proc/net Network status of your machine
/proc/pci PCI devices found at initialization
/proc/sys Details on kernel variables, e.g.

– Maximum number of files we can
open (file-max)

– Number of files currently open
(file-nr)

– The uptime of the system (uptime)

Table 2.1: System Information from /proc

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 54

2.25 Filesystem Structure

Multi-Volume Filesystems

• The filesystem can be held on several devices

• Large disks can be divided into partitions

– This creates several logical devices

• A basic Linux system must be present on /

• Other parts of the fs may be mounted at any time

• The main ones are mounted at boot time

• This is controlled by the /etc/fstab file which
says which volumes are mounted where

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 55

2.26 /etc/fstab - Example

Logical
Volume

Mount Point FS
type

Options Dump Check
order

/dev/hda1 / ext2 defaults 1 1
/dev/hda5 /home ext2 defaults 1 2
/dev/hda7 /tmp ext2 defaults 1 2
/dev/hda6 /usr ext2 defaults 1 2
/dev/hda8 swap swap defaults 0 0
/dev/fd0 /mnt/floppy ext2 noauto 0 0
/dev/cdrom /mnt/cdrom iso9660 noauto,ro 0 0

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 56

2.27 Mounting Additional Volumes

• To mount a filesystem use mount, e.g.

mount /dev/cdrom /mnt/cdrom

Mount the filesystem /dev/cdrom in the directory
/mnt/cdrom
When we
cd /mnt/cdrom we are placed at the root of the
CDROM’s filesystem

• To unmount use umount name where name is
either the filesystem name or the mount point:

umount /dev/cdrom
umount /mnt/cdrom

• Note - A filesystem can only be unmounted
when it is no longer in use. ‘In use’ includes :

– Having any file on that filesystem open

– Having a shell in a directory on that filesystem

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 57

2.28 Mounting shared filesystems

• We can mount shared filesystems using NFS

mount -t nfs hostname:path mount-point

• Example:

mount -t nfs landlord:/backup /mnt/backup

• We can also share files from Windows based
servers using SAMBA

• This is a free implementation of the Windows
file-sharing protocols, e.g.

smbmount //grotbox/D /mnt/NTfiles

• NOTE Linux does not use the ‘drive letter’
concept at all

– Drives and shares integrate seamlessly into
the filename tree

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 58

2.29 Summary

• The primary Linux filesystem is Ext2

• It has a tree-like hierarchy of directories

• Directories merely contain pointers to files
(inodes)

• inodes contain all the information about a file

• Can have multiple links to the same file

• Read/Write access is controlled per file

• Creation/Deletion of files is controlled by
permissions of the directory

• Several filesystems can be mounted to create
the directory hierarchy

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 59

2.30 Filesystem Exercises

1. Basic navigation

(a) Log in and use pwd to discover what the full path of your home directory is

(b) Change directory to /bin and then /tmp. Use pwd to check you got there each
time

(c) When in /tmp type cd .. and use pwd to find out where you end up

(d) What is the parent directory of the root of the filesystem

(e) Move back to your home directory. Think of three ways you can do this.

2. Directories

(a) Start in your home directory and create a directory called new
(b) Change to the new directory and create a directory called newer
(c) Go to you home directory. Now create a directory under newer called

newerstill There are two ways to do this what are they? (Hint: You don’t have
to change directories to solve this)

(d) Remove all the directories that you’ve just created, there are several ways to do
this

(e) Create the same directory structure with one command

3. Links

(a) Create a file called test in your home directory (Typing echo foo > test
should do this). Now create a hard link to test called h_test and a symbolic
link to test called s_test

(b) Find out the inode number of the files. Check you understand why they are what
they are.

(c) Remove the original file called test. Can you still get at the contents of the
original file?

(d) What happens if you try cat s_test. Make sure you understand the destinction
between h_test, and s_test

(e) Try to make a hard link to your home directory. Why does this fail?

4. /proc
• /proc

(a) Use the files in /proc to find out how much memory your system has and
what processor it is running on

(b) Find out what PCI devices are attached to your machine
(c) Find out what environment variables are set for your currently running shell

using the information in /proc. Hint you can get the process-id of your shell
using $$

(d) Whether or not your machine is doing IP forwarding is stored in the file
/proc/sys/net/ipv4/ip_forward. You can cat this file, a value of 1
means that IP forwarding is turned on. Find out whether or not your
machine will forward IP

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 60

2.31 Filesystem Solutions

1. Basic Navigation

(a) You will probably see

$ pwd
/home/username
where username is the name you log in with

(b) Check that the output of pwd is /bin and /tmp
(c) You should end up in / This is the root of the filesystem

(d) The parent of / is itself. You can use ls -lia to show that the inode numbers
for . and .. are the same when you are in /

(e) You can move back to your home directory by using any of the following:

i. cd
ii. cd ~
iii. cd /home/username (Provided your home directory lives under /home)

2. Directories

(a) $ cd
$ mkdir new

(b) $ cd new
$ mkdir newer

(c) $ cd
then either :

i. $ cd new/newer
$ mkdir newerstill

ii. $ mkdir new/newer/newerstill
(d) Any of the following will work :

i. $ cd
$ cd new/newer
$ rmdir newerstill
$ cd ..
$ rmdir newer
$ cd ..
$ rmdir new

ii. $ cd
$ rmdir -p new/newer/newerstill
You should be careful of the final one as this will remove the directories
regardless of any files that may be in them!

iii. $ cd
$ rm -fr new/

(e) $ cd
$ mkdir -p new/newer/newerstill

3. Links

(a) This is achieved as follows:

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

The Linux Filesystem v0.2 61

$ ln test h_test
$ ln -s test s_test

(b) ls -li should show that the inode number of the original file and h_test are
identical h_test is another name for the original file. The inode number for
s_test will be different. It is a seperate file that contains information about the
location of the file it is a link to

(c) After you created the hard link the original file had two names test and h_test.
You have removed test but until all names for a file have been removed it is still
accessible. In this case you can do cat h_test to see the contents of the file

(d) This should fail with a No such file or directory message. s_test
contained a pointer to the file test not the inode number. There is no longer a
file named test so this cannot work. Hard links reference a file by it’s inode
number, symbolic links reference it by its name

(e) This is not allowed, as it could stop the filesystem being strictly hierarchical

4. /proc
(a) cat /proc/meminfo should show you memory usage

(b) cat /proc/pci gives a list of all PCI devices

(c) cat /proc/$$/environ will give a list of the environment of your current shell.
Each variable is delimited with the nul character (decimal 0). The following will
show the output with one variable per line :

$ cat /proc/$$/environ | tr '\verb|\|000' '\verb|\|n'
(d) See The Exercise

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Module 3

Shell Command Line Interface

Objectives

On completion of this module, you should be able to:

• Understand the Linux command line interface

• Get around the command line

• Use input/output redirection

• Manage process communication using pipes

• Use filename completion and generation

62

Shell Command Line Interface v0.2 63

3.1 Introduction

• The standard command line interpreter under
Linux is bash (/bin/bash or /bin/sh)

• An enhanced version of the classic Bourne shell

• Shares most features of other shells (C, Korn,
etc) and has some more advanced features

– ‘Plumbing’ - transparent redirection and pipes

– Background processes

– Process suspension, resumption, termination

– Filename completion and wildcard generation

– History

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 64

3.2 Getting around the command line

• You can use the cursor keys to move around and
edit the current line1

• By default, bash uses emacs-like keystrokes for
navigation and editing. Here are 4 examples:

Keystroke Action
�a Move to the beginning of the line
�e Move to the end of the line
�k Delete to the end of the line
�w Delete the previous ’word’

• To choose emacs or vi-like keystrokes:

$ set -o emacs
$ set -o vi

• bash man page gives details of all keystrokes

1This may not work on badly-configured systems

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 65

3.3 History

• Bash remembers used commands (in a ‘history’)

• Old commands are retrievable in different ways

• Repeat the previous command by typing !!

• Execute the nth previous command by typing !-n

• Typing !string repeats the last command
beginning with string

• To view your history command by command, use
the up and down cursor keys

• View your history at any time by typing history

• History is a very useful feature, if used well

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 66

3.4 Plumbing

• Processes typically start with three files open:

Name Descriptor
Standard input 0
Standard output 1
Standard error 2

• Later we see how to refer to their file descriptors

• These are normally connected to the keyboard
and your command-line terminal

• They can be redirected by the shell

– Transparently to the process concerned

– Any or all streams can be redirected

– You can redirect to/from a file or to/from
another process

• Redirection to a process is known as ‘piping’

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 67

3.5 Output Redirection

• Redirection of output is done using ’>’

• For example:

$ command > output

Creates the file output (or overwrites it if it
already exists) and places the standard output
from command into it

• We can append to a file rather than overwriting it
by using >>

• > is actually a shorthand for 1>

• Error output can be redirected using 2> or 2>>

$ command 2> error-out

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 68

3.6 Input Redirection

• < redirects standard input from a file, e.g.

$ command < input

• command will now take the contents of the file
input as its input

• This could also be written as 0<

• Consistent with > and 1>

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 69

3.7 Combining Redirection

• Redirect more than one descriptor by giving
more than one redirection, e.g.

$ command 1> output 2> error

• Group redirections using the >& operator, e.g.

$ command > output 2>&1

– Send the output to the file output (> output)

– Send the error to the same place as the
standard output (2>&1)

• The order of these is very important

• The redirections are evaluated left-to-right, e.g.
the following differs from the previous example

$ command 2>&1 > output

– It sends error to the normal output and normal
output to the file output

– This is because at the time of evaluating 2>&1
the ’1’ still refers to terminal output, it hasn’t
yet been redirected to the file output

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 70

3.8 Pipelines

• Output can be sent to another process using ‘|’

– Known as the pipe symbol

• A pipe connects the output of one process to the
input of another

• The data waiting to be transferred is buffered

• The processes run concurrently

• Linux ensures that the processes keep in step

• For example:

$ sort document | uniq | mail lee

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 71

3.9 Background Processes

• Most commands run to completion before you
get your shell prompt back

• A ‘background’ process continues while you get
your prompt back immediately

• To launch a process in the background place & at
the end of the line, e.g.

$ sort /var/log/maillog -o output &

• In this case, output and error continue to appear
on your terminal

• Input is disconnected, so typing goes to the shell,
not to the background process

• If a process needs user input, and can’t take it
from a file, it is ’stopped’

– It won’t resume until brought to the foreground
to receive input

• You should normally start background processes
with their output and error redirected to a file, e.g.

$ sort big_file > output 2> error_output &

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 72

3.10 Background Processes (continued)

• Running processes can be put in the background

– Suspend the process by typing ^Z in the
terminal that the process is running in

– Put the process in the background using bg

• Bring a process back to the foreground using fg

• fg and bg operate on the most recent process by
default

– Change to a process, by job number or name

• jobs displays current shell processes:

$ jobs
[1]+ Stopped (tty output) top
$ fg %1

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 73

3.11 Background Processes and nohup

• Sometimes it is necessary to start a process and
leave it running when you log out

• If your shell is killed, any background processes
will also be lost

• nohup gets round this by detaching the process
from the terminal

• Always redirect output and error with nohup, e.g.

$ nohup sort bigfile > out 2>&1 err.out

• If you don’t redirect them then they will end up in
./nohup.out or nohup.out in your home directory

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 74

3.12 Command Grouping and Sub-shells

• Bash can execute multiple commands on a line

• Sequential commands are seperated by ‘;’

$ sort data -o sorted_data ; mail lee < sorted_data

• It’s possible to launch a sub-shell to execute a
command or group of commands

– By putting commands within parentheses, e.g.

$ (command1 ; command2)

• Can also put a subshell in the background, e.g.

$ (command1 ; command2) &

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 75

3.13 Process Management

• ps prints info about a users’ processes :

PID TTY STAT TIME COMMAND
22074 p0 S 0:02 Eterm -t trans
22075 p0 S 2:13 emacs -bg black
22081 p0 S 0:00 asclock
22590 p5 R 0:00 ps

• jobs only prints info about processes belonging
to the current shell

• wait postpones shell until process is finished

– Usually given a process id as an argument

– If no argument is given it waits until all the
shell’s processes have terminated

• kill is used to send signals to processes

– Can terminate background processes

• Some processes use signals to indicate tasks to
do, e.g. log rotation, re-reading config files, etc

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 76

3.14 Signals

• kill can be given a signal name or number

• There are a variety of signals :

SIGHUP 1 Hangup detected on
controlling terminal or death
of controlling process

SIGINT 2 Interrupt from keyboard
SIGQUIT 3 Quit from keyboard
SIGKILL 9 Kill signal
SIGTERM 15 Termination signal
SIGUSR1 30 User-defined signal 1

10
16

SIGUSR2 31 User-defined signal 2
12
17

• Unless specified, kill sends a SIGTERM which
causes most processes to terminate

• If a process is unresponsive, it can be forcibly
killed by sending it SIGKILL

$ kill -9 1512
1512: Terminated

or

$ kill -KILL 1512
1512: Terminated

• Only process owner (or super-user) can signal it

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 77

3.15 Background Processes: top

• top displays the processes running on a machine

• Results can be sorted in various ways
• Typical output may be:

PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
22594 user 10 0 736 736 556 R 0 8.2 0.5 0:00 top

1 root 0 0 144 96 76 S 0 0.0 0.0 0:03 init
2 root 0 0 0 0 0 SW 0 0.0 0.0 0:19 kflushd
3 root -12 -12 0 0 0 SW< 0 0.0 0.0 2:42 kswapd

486 root 5 5 3160 2356 804 S N 0 0.0 1.8 0:03 mysqld
869 root 0 0 68 12 12 S 0 0.0 0.0 0:00 mingetty
838 www 0 0 11468 6280 488 S 0 0.0 4.9 4:14 squid
48 root 0 0 100 80 48 S 0 0.0 0.0 0:01 kerneld

230 root 0 0 384 372 272 S 0 0.0 0.2 0:12 syslogd
239 root 0 0 164 120 72 S 0 0.0 0.0 0:00 klogd
250 daemon 0 0 164 132 88 S 0 0.0 0.1 0:00 atd
261 root 0 0 192 160 112 S 0 0.0 0.1 0:01 crond
272 bin 0 0 244 224 168 S 0 0.0 0.1 0:00 portmap
283 root 0 0 572 296 248 S 0 0.0 0.2 0:17 snmpd
295 root 1 0 136 88 60 S 0 0.0 0.0 0:00 inetd
306 root 0 0 516 488 224 S 0 0.0 0.3 0:06 named
317 root 0 0 124 56 48 S 0 0.0 0.0 0:00 lpd

• N.B. top is not available on all UNIX

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 78

3.16 Filename Generation

• Some characters are ‘special’ to the shell

Chars Meaning
* Matches any string, including the null string
? Matches any single character
[...] Matches any one of the enclosed characters.

A pair of characters separated by a minus sign
denotes a range. Any character lexically
between those two characters, inclusive, is
matched. If the first character following the [is
a ! or a ^ then any character not enclosed is
matched. A - or] may be matched by including
it as the first or last character in the set.

Table 3.1: Special characters under bash

• Special characters can be used to match
filenames, e.g. to show files beginning with f

$ echo f*

• To show files starting with f, followed by a vowel:

$ echo f[aeiou]*

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 79

3.17 Quoting Mechanisms

• Sometimes it’s necessary to ignore the special
meanings that some characters have

• Use a backslash (\) to quote a single character,
e.g. to list filenames starting with f*\

$ echo f*\\

• To quote a longer string, enclose it in quotes :

' disable all interpretation
" disable filename generation and blank

space interpretation

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 80

3.18 Shell built-in commands

• Some commands must be built in to the shell,
because they can’t be executed independently

– cd, if executed independently would change
its own directory, not that of your shell

– umask, would change its umask, not the shell’s

– logout

– history

• Some other commands are built in for speed

– pwd

– echo

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 81

3.19 Command Line Exercises

1. Redirection

(a) Try typing the following commands:

$ cat > newfile 2> newfile.error
$ car > newfile 2> newfile.error
$ cat > newfile 2>&1
$ car > newfile 2>&1
$ cat < newfile
$ echo foo | cat > newfile 2>&1
$ ech foo | cat > newfile 2>&1
$ echo foo | car > newfile 2>&1
$ (ech foo | cat) > newfile 2>&1
Make sure you understand what happens in each case.

2. Filename expansion and Quoting

(a) Do the following on the directory /bin
i. List all filenames with exactly three characters.
ii. List all filenames with exactly three characters in which the second

character is a vowel.
iii. List all filenames with a, b, c, or d as the last character.
iv. Construct a command to print the number of filenames consisting of exactly

three characters.
v. Construct a command to print the total number of files with exactly two,

three or four characters in their name.

(b) Compare the effect of the following commands:

echo $HOME
echo "$HOME"
echo '$HOME'
echo *
echo "*"
echo '*'
echo $HOME/*
echo "$HOME/*"
echo '$HOME/*'

(c) Try to create a file with the name *. Was this a sensible thing to do? How would
you delete it? (Be very careful!)

3. Background processes and nohup
(a) Start the command sort /dev/random in the background in your current shell

(b) Bring it back to the foreground and terminate it by typing ^C

(c) Start it again, and once more so that you have two copies running in the
background

(d) Bring them to the foreground and terminate them in the order you started them

(e) Start the same command in the background, and terminate it using kill

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 82

4. Grouped commands

Compare the following command sequences, and make sure you understand the
differences :

(a) cd /tmp
cd /usr; ls
pwd

(b) cd /tmp
(cd /usr; ls)
pwd

(c) sleep 5; sleep 5 &
(d) (sleep 5; sleep 5) &

Check you can use your history to get at and repeat any of the commands you have
typed.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Shell Command Line Interface v0.2 83

3.20 Command Line Solutions

1. Filename expansion and Quoting

(a) These are solutions which will do the job, there may be other ways of acheiving
the same thing

i. ls ???
ii. ls ?[aeiou]?
iii. ls *[abcd]
iv. ls ??? | wc -l
v. (ls ?? ; ls ??? ; ls ????) | wc -l

(b) When not quoted $HOME gives the name of your home directory. This is
variable substitution. We can see that this substition still happens inside "
quotes, but not inside ’ quotes. echo * expands to all the filenames in the
current directory. This is filename generation and doesn’t happen in either
quotes.

(c) You can delete the file safely using either

• rm "*"
• rm '*'

2. Background processes and nohup
(a) $ sort /dev/random &
(b) $ fg

^C
(c) $ sort /dev/random &

[1] 26409
$ sort /dev/random &
[2] 26410

(d) $ jobs
[1]- Running sort /dev/random &
[2]+ Running sort /dev/random &
$ fg %1
sort /dev/random
^C
$ fg %2
sort /dev/random
^C
$

(e) $ sort /dev/random &
[1] 26462
$ kill -9 26462

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Module 4

Basic Linux Tools

Objectives

At the end of this section, you will have a basic
understanding of:

• Some of the most frequently used Linux ‘tools’

• How to combine tools to solve problems

84

Basic Linux Tools v0.2 85

4.1 Introduction

The basic Linux utilities dealt with here, are:

Finding files find
locate

Getting info about commands man
Viewing file contents cat

less
head/tail

Getting information about a file ls
file
wc
diff
cmp

Operating on file contents grep
sort
uniq
split/csplit
tar
gzip/bzip2

Simple text manipulation tr
expr
sed
awk

Table 4.1: Basic Linux utilities

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 86

4.2 Using Tools

• Typical Linux systems contain over 400 tools

• Tools are combined (via pipes and redirection) to
solve specific problems

• Most tools have a standard syntax:

command [options] [files ...]

• Some arguments must be quoted

• Standard input often read if no filename given

• Most tools can take several filename arguments

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 87

4.3 The On-Line Manual (man)

• Most commands have an associated man page

• Accessed by typing:

$ man command

• Brings up a page of information usually detailing:

– command name, section number, description

– syntax

– options

– version information

– location of configuration files

– other related commands

– examples of usage

– known bugs (if any . . .)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 88

4.4 Finding Files the Long Way (find)

• find searches the filesystem in real time; making
disks work hard

• Can find files by name, type, size, dates, e.g

– To find all files ending with .jpg under the
current directory:
find . -name "*.jpg"

– To find all filenames ending in .jpg and
modified in the last 8 days below /etc
find /etc -name "*.jpg" -mtime -8

• Tests can be combined with -o and negated with
!, for example:

– To find all filenames not ending in .jpg or
modified in the last 8 days
find . ! -name "*.jpg" -o -mtime -8

• Can execute commands on the files it finds. The
name of the file found is placed in {}

find . -name "*.gif" -exec ls -l {} \;

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 89

4.5 Locate Files in a Filesystem DB (locate)

• locate searches a periodically-updated
database of the filesystem(s)

• Not available on all systems

• Very fast, but needs regular updating

• Given the command ‘locate string’, locate will
show all files containing string in their full
pathname, e.g.

$ locate maillog
/var/log/maillog
/var/log/maillog.1
/var/log/maillog.2
/var/log/maillog.3
/var/log/maillog.4

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 90

4.6 View and Concatenate Files (cat)

• Displays and/or joins (concatenates) files

• Sends the content of named files to standard
output

• If no filename is given, it sends its standard input
to standard output

• Given more than one filename, it displays the
each file’s contents sequentially, i.e, joins them

• Example:

$ cat file1 file2 file3 > all files

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 91

4.7 View Large Files & Output (less)

• less displays the contents of file(s) in a
controlled way on standard out

– Usually, one page at a time
– Like UNIX/DOS command more, on steroids

• You can search for patterns in the file

• It allows you to move quickly to any point
(backwards or forwards)

• Similar usage to more:

Action Keystokes
Top of page g < ESC-<
Bottom of page G > ESC->
Forward one screen f �F �V SPACE
Backward one screen b �B ESC-v
Up one line y �Y k �K �P
Down one line e �E j �N RETURN
pattern Search forward /pattern
pattern Search backward ?pattern
Repeat pattern Search forward n
Repeat pattern Search backward N
Move to nth line ng
!command Execute the shell command with

$SHELL
|Xcommand Pipe file between current pos &

mark X to shell command
v Edit the current file with $VISUAL

or $EDITOR

Table 4.2: Commands within less

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 92

4.8 Viewing Parts of Files (head and tail)

• head displays the first few lines of a file

• tail displays the last few lines of a file

• You can specify how many lines are displayed

– To display only the first 4 lines:
$ head -4 filename

• tail -f often used to monitor the growth of a file

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 93

4.9 Listing File Information (ls)

• Without any options, ls lists visible files in the
current directory

• The most common options to ls include:

Flag Option
-l Long (detailed) listing of file info, including:

size, ownership, permissions and type)
-a Show all files, including hidden ones
-F Highlight directories and executables with /

and @ respectively
-R Recursively list subdirectories
-t Sort list by last modification time
-u Sort list by last access time (with -t)
-X Sort list by file eXtension
-r Reverse order of listing

Table 4.3: Common options to less

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 94

4.10 File Classification (file)

• file displays the type of data contained in
named file(s)

• Results not always correct

• Uses list of magic numbers and keywords in
/usr/share/magic to determine file type 1

• Classifications include: executable, archive,
C program, ASCII text, JPEG image . . .

• Syntax:
file [-vbczL] [-f filename] [-m magicfiles] file...

1The magic numbers file can be /etc/magic on some systems

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 95

4.11 Count Words, Lines, Characters (wc)

• wc displays the number of lines, ‘words’, and
characters in a file 2

Flag Option
-l Only displays the number of lines
-w Only displays the number of ‘words’
-c Only displays the number of characters

Table 4.4: Options to the wc command

2A ‘word’, in this context, is a character string surrounded by SPACEs, TABs, NEWLINEs, or a
combination of them

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 96

4.12 Differences Between Files (diff)

• diff displays the difference between two files,
line-by-line

• For example, given the files text1 and text2
various types of difference can be displayed:

text1:
This is a temprary test
to check the diff
utility

text2:
This is a temporary test
to check the diff
utility.

1. A simple lin-by-line comparison:

$ diff text1 text2
1c1
< This is a temprary test

> This is a temporary test
3c3
< utility

> utility.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 97

2. Using the context output format (-c):

$ diff -c text1 text2
*** text1 Mon Apr 19 14:46:25 1999
--- text2 Mon Apr 19 14:46:05 1999

*** 1,3 ****
! This is a temprary test
to check the diff

! utility
--- 1,3 ----
! This is a temporary test
to check the diff

! utility.

3. Using the unified output format (-u):

$ diff -u text1 text2
--- text1 Mon Apr 19 14:46:25 1999
+++ text2 Mon Apr 19 14:46:05 1999
@@ -1,3 +1,3 @@
-This is a temprary test
+This is a temporary test
to check the diff
-utility
+utility.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 98

4.13 Compare Binary Files (cmp)

• Displays differences between 2 binary files

• Locates the byte and line number of the first
difference

• Can show all differences if required, e.g.

cmp -l file1 file2

• cmp -s suppresses output and returns exit status

– 0 if the files are identical

– 1 if the files differ

– 2 if an error has occurred

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 99

4.14 Regular Expression Searches (grep)

• Line-based search for regular expressions in
file(s)

• Reads standard input if no filenames are given

• Matching lines are printed to standard output

• Popular options:

Flag Option
-i Ignore case
-l List only filenames containing the

expression
-v Reverse sense of test, i.e. find

non-matching lines
-w Word search, i.e. match whole word
-E Extended regular expression search

(more complex patterns), egrep similar
-F Fixed string pattern search, same as

fgrep

Table 4.5: Popular grep options

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 100

4.15 Sort and Merge Files (sort)

• sort and/or merge files

• Acts as a filter without file arguments

• Sorts entire lines lexically, by default

• Alternative sort orders:

Flag Option
-d Dictionary order
-n Numerical order
-r Reverse order

Table 4.6: Alternative sort orders

• Other popular options:

Flag Option
-b Blanks (TAB, SPACE) ignored
-f Fold lowercase to upper before sorting
-i Ignore non-printable characters
-m Merge files, without checking if sorted
-tx Set field delimiter in file as x
-u Unique, outputs repeat lines once only
+POS1 [-POS2] Specify a field in each line as a sorting

key, starting at POS1 and ending at
POS2 (or NEWLINE). Fields and
character positions are numbered
starting at 0

-k POS1[,POS2] Alternative syntax for specifying
sorting keys. Positions are numbered
starting at 1

Table 4.7: Popular sort options

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 101

4.16 sort — Examples

Consider /etc/passwd which typically contains lines
in the following format:

username:password:UID:GID:Realname:Homedirectory:shell

• To sort by username:

$ sort -t: -f +0 -1 /etc/passwd

• To sort numerically by user ID:

$ sort -t: -n +2 -3 /etc/passwd

• To sort by real name within group ID:

$ sort -t: +3n -4 +4f -5 /etc/passwd

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 102

4.17 Display Unique Lines (uniq)

• Removes all but one of successive repeated
lines

• Acts on standard input, often piped from sort

• Most popular options:

Flag Option
-c Count duplications and prepend number

to each output line
-d Duplicated lines only are displayed
-u Unique lines only are displayed
-n Ignore the first n fields
+n Ignore the first n characters
-w Specify the number of chars to compare

Table 4.8: Popular uniq options

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 103

4.18 Split Files (split)

• Split a file into pieces

• Outputs sections to new files or standard output

• Creates files named prefixaa, prefixab,
prefixac . . .

• Main split options:

Flag Option
-ln Put n lines of the input file into each

output file
-bn Put n bytes of the input file into each

output file
-Cn Put as many complete lines of the input

file as is possible into the output file, up
to n bytes

Table 4.9: Main split options

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 104

4.19 Splitting Files by Context (csplit)

• Splits file into sections determined by context
(patterns or regular extressions)

• Syntax:

csplit [-f prefix] [-b suffix] [-n digits]
filename pattern...

• Main csplit arguments:

Argument Instruction
/regexp/[offset] Split the file at occurrence of

regexp. The line after the optional
offset (‘+’ or ‘-’ followed by a
number) begins next bit of input

{repeat-count} Repeat the previous pattern split n
times. Substitute an asterisk for n
to repeat until the input is exausted

-fstring Use string as prefix of output
filename

-bstring Use string as suffix of output
filename

-nn Use output filenames n digits long

Table 4.10: Main csplit arguments

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 105

4.20 Store and Retrieve Archives (tar)

• Originally designed to make tape archives

• Takes a group of files and creates one big file
containing their contents and details

• Widely used on most disk types, especially for:

– Compression with gzip (see Section 4.21) 3

– Maintaining Linux file details (permissions,
dates, ownership etc) on inferior filesystems

– Bundling trees for distribution

• Key tar options:

Flag Option
-c Create a new archive
-r Append files to an existing archive
-x Extract the contents from an archive
-z Create/Open gzip compressed tar file(s)
-f Filename of the file or device to hold the archive
-P Pathnames are absolute

Table 4.11: Key tar options

• To create a gzip compressed archive of /etc:

$ tar -czf /home/username/filename.tar.gz /etc

• To extract the same file in the current directory:

$ tar -xzf filename.tar.gz

3The gzip compression option is not available on all UNIX versions of tar.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 106

4.21 Compression Utilities (gzip)

• Linux has many compression utilities; gzip
dominates thanks to integration with tar

• Takes files or standard input and compress them
to file(s) or standard output

• Uses lossless compression, so safe on any file

• Key gzip options:

Flag Option
-r Recursive compression of subdirectories
-d Decompress (same as gunzip)
-[1-9] Fast or best compression, where 1 is fastest

and 9 is most intense compression

Table 4.12: Key gzip options

• bzip2 has better compression ratios but is not
yet battle-tested

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 107

4.22 Translating Characters (tr)

• Translate characters in standard input into
different characters in output

• Syntax:

tr [options] [string1 [string2]]

• Characters in string1 are replaced by the
corresponding character in string2

• Character position in both strings matters

• Both strings should be the same length 4

4If file1 is shorter than file2, the extra characters at the end of file2 are ignored. If file1 is longer,
GNU tr follows BSD in padding file2 to the length of file1, by repeating the last character. With the -t
option it follows AT&T by truncating file1 to the length of file2.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 108

4.23 Examples of tr Usage

• To replace all vowels in the input with spaces

tr 'aeiou' ' '

• Using character ranges to translate all lower
case letters into their upper case equivalents

tr '[a-z]' '[A-Z]'

• Using the asterisk * to replace all 10 digits with
the letter same ‘n’

tr '[1-9]' '[n*10]'

• Use the -c option (complement) to replace all
characters in string1 which don’t belong in a
range

tr -cs '[a-zA-Z0-9]' '[\n*]'

N.B. This puts every word on a line by itself, by
converting all non-alphanumeric characters to
newlines, then ‘squeezing’ repeated newlines
(with -s) into a single newline.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 109

4.24 Text Manipulation (sed)

• The sed ‘stream editor’ edits input according to a
set of rules and sends to standard output

• Rules can be given from the command line or
read from file

• Often combined with the awk scripting language

• Faster than interactive editors for some tasks

• Very flexible, non-casual tool

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 110

4.25 Text Manipulation (awk)

• Scripting (programming) language for strings

• Transforms input according to a program

• The program must be stored in a file

• Not a casual tool

• Many Linux users now use perl scripts to do the
text manipulation tasks they previously used sed
and awk for

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 111

4.26 Linux Printing

• Completely network-oriented

• Any printer can be made available to any client
(machine and application)

• All print jobs are sent to a queue

• Queues can be viewed, edited, maintained from
anywhere

– Subject to permission

• Formated docs can be sent straight to queues
(no ‘device drivers’)

• Printer configuration via text file /etc/printcap,
see man 5 printcap

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 112

4.27 Printing documents

• Printing may be ‘dumb’

– Data dumped straight to printer

• You get BAD results if formatting is wrong

• Your setup may be smart

– Autodetect data formats and convert

• Older UNIX mainly dumb

• RedHat pretty smart

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 113

4.28 Main Printing Tools

• lpr Sends job to the queue for a named printer

• lpq Returns info about jobs in a queue

• lprm Removes unwanted jobs from a queue

• lpc Enables system administrator to control the
operation of the printing system

• Desktop environments may offer “drag ‘n’ drop”,
visual facilities, etc

– see man lpc for details

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 114

4.29 Using lpr

• Syntax:

lpr [options] file ...

• Main Options:

Flag Options
-P Name of the printer to send the job to
-n Print n copies of the document
-m Send mail on completion

Table 4.13: Main lpr options

• Example:

$ lpr -Pdjrmt -2 filetypes.txt

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 115

4.30 Using lpq

• Syntax:

lpq [options]

• Options:

Flag Options
-P Name of the printer/queue to interrogate
-l Get info on each file within a job

Table 4.14: lpq options

• Example:

$ lpq -Pdjrmt -l

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 116

4.31 Using lprm

• Syntax:

lprm [options]

• Options:

Flag Options
-P Remove jobs from named printer/queue
- Remove all jobs belonging to yourself
user Remove all jobs belonging to user
n Remove job number n

Table 4.15: lprm options

• Example:

$ lprm -Pdjrmt -davef

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 117

4.32 Basic Tools Exercises

1. Find and Locate Files

(a) Display all the filenames under /usr/sbin.
(b) Display all the filenames under /usr/sbin begining with a lowercase ‘c’.
(c) Repeat the previous question, but translate the output to uppercase.
(d) Display all the files under /usr/sbin which are over 5k in size in uppercase.

2. Display Parts of Files

(a) Display the first 10 lines of the file /etc/mime.types
(b) Display the last 10 lines of /etc/mime.types
(c) Display the first 25 lines of /etc/mime.types
(d) Display /etc/mime.types one screen at a time
(e) While viewing /etc/mime.types page-by-page, search for ‘html’

3. Classify, Count and Compare Files

(a) Find out what file types you have in the following directories:
i. /etc
ii. /usr/bin

(b) Repeat the previous question, but this time:
i. Re-direct /etc listing to new file filetypes.txt
ii. Append the listing for /usr/bin to filetypes.txt

(c) Build a tool (i.e. write a command) to find out how many files are in the
/usr/bin directory.

(d) Create 2 new files from listings of 2 user’s home directories, then find the
differences between them.

(e) If you are feeling adventurous, use diff and ed to make the two files created in
the last question identical.

4. Regular Expressions

Using the filetypes.txt file that you created before, do the following:

(a) List all the lines that contain ‘directory’
(b) List all the lines that don’t contain ‘directory’.
(c) Find out how many files are directories, then find out how many aren’t.
(d) Why does the following give an error message (try redirecting the output to

/dev/null so you can see the error).
grep ASCII text types

5. Sorting

(a) Sort the filetypes.txt file into reverse alphabetical order on the first field.
You may notice that capital and lowercase letters are sorted independently, e.g.
‘A’ comes before ‘a’.

(b) Repeat the first sorting exercise but ignoring case differences
(c) Sort the filetypes.txt files into alphabetical order on the second field (the file

type).
(d) Find out how many English text files are listed in the filetypes.txt file.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 118

4.33 Basic Tools Solutions

1. Find and Locate Files

(a) Either

$ find /usr/sbin
or

$ locate /usr/sbin/*
(b) Either

$ find /usr/sbin/c*
or

$ locate /usr/sbin/c*
(c) Either

$ find /usr/sbin/c* | tr '[a-z]' '[A-Z]'
or

$ locate /usr/sbin/c* | tr '[a-z]' '[A-Z]'
(d) $ find /usr/sbin -size 5k | tr '[a-z]' '[A-Z]'

2. Display Parts of Files

(a) Use

$ head /etc/mime.types
(b) Use

$ tail /etc/mime.types
(c) Use

$ head -n 25 /etc/mime.types
(d) Use one of the following

$ less /etc/mime.types
or

$ more /etc/mime.types
(e) While in one of the above, type

/html <RETURN>
3. Classify, Count and Compare Files

(a) Use these commands:

i. $ file /etc/*
ii. $ file /usr/bin/*

(b) Use these commands

i. $ file /etc/* > filetypes.txt

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic Linux Tools v0.2 119

ii. $ file /usr/bin/* >> filetypes.txt
(c) The easiest solution is

$ ls -l /usr/bin | wc -l
(d) Something like this:

$ ls /home/davef > test1.txt
$ ls /home/mikeb > test2.txt
$ diff test1.txt test2.txt

(e) This solution uses the --ed option to diff, and the ed line-editor.

$ diff --ed test1.txt test2.txt > differences.txt
$ cat >> differences.txt
w
q
<CONTROL>d
$ cat differences.txt | ed test1.txt
You could substitute the sed stream editor to pipe everything through one line.

4. Regular Expressions

(a) Use

$ grep directory filetypes.txt
(b) Use

$ grep -v directory filetypes.txt
(c) Use either

$ grep -c directory filetypes.txt
$ grep directory filetypes.txt | wc -l
then

$ grep -cv directory filetypes.txt
$ grep -v directory filetypes.txt | wc -l

(d) Without escaping the space between ASCII and text the shell assumes the
pattern has ended and takes text as a filename to look for; hence the error
about a non-existing file. grep continues, however, showing lines that match
"ASCII" in the files it can find.
What you probably wanted was:

$ grep "ASCII text" types
5. Sorting

(a) Use

$ sort -r filetypes.txt
(b) Use

$ sort -fr filetypes.txt
(c) Presuming the second column starts at character position 25

$ sort -k 1.25 filetypes.txt
(d) $ grep -c ``English text'' filetypes.txt

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Module 5

Introduction to Editing With vi

Objectives

In this section, you will learn how to:

• Use the vi editor to view, create and edit files

– the vi screen layout

– move round in files

– replace, insert and change text

– search files

120

Introduction to Editing With vi v0.2 121

5.1 Text editors under Linux

• There are a number of text-editors available with
the various Linux distributions

• vi is available on virtually every Linux distribution

• Also comes with 99% of Unix systems

• Everyone should have at least a basic
understanding

• vi is like Linux

– Has some very complex and powerful
functions that can make your life easier

– However, you don’t have to know everything,
you get by knowing the basics

– Shares its key strokes with many other utilities

• We’ll just cover the basics here, vi is too big to
cover everything!

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 122

5.2 vi and your terminal

• vi is fundamentally text-based

– But graphical adaptations are available

• Needs to know your terminal’s capabilities

– May not function if your terminal is
misconfigured

– Check your TERM enviornment variable

– Terminal capabilities are listed in
/etc/termcap

– Generally not an issue

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 123

5.3 vi screen layout

• Lines beginning with an @ have been deleted

– On slow terminals vi sometimes shows things
like this instead of clearing it screen

• Line containing simply a ~ show that you are past
the end of the file and there is nothing here.

• The bottom line of your terminal is your status
line

– Shows status messages

– Where you type some commands (The ‘ed’
command set, explained later)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 124

5.4 Opening files with vi

• Launch vi by typing its name on the command
line

• With no arguments vi starts with an un-named
and empty buffer

• Can also say vi filename to open a certain file

• If you don’t have write permission on a file the
status line will tell you :

"/etc/aliases" [readonly] 152 lines, 3215 characters

• If there is no such file status line will say
something like :

"some_filename" [New File]

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 125

5.5 vi Modes

• Unlike many editors vi does not always insert
what you type into the file

• Has several ‘modes’

– Only one is responsible for inserting text into
the current file

• vi has 3 modes:

command mode Moving the cursor, searching and
manipulating existing text

insert mode Entering new text
‘:’ (‘ed’) mode File manipulation, advanced

searching and substitution

• vi starts in command mode

• Return to command mode at any time by hitting
<ESC>

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 126

5.6 Saving, changing file and quitting

• When you open a file, a copy of the file is opened
into memory

• Any changes you make apply to this copy only

• File on disk only changes when you explicitly say
so

• To save (or write) a file you must be in
command-mode, then type :w

• You can also save your file under a different
name E.g.
(:w newfilename)

• To quit vi type
:q

• vi will normally prompt you if you have unsaved
work

• If you wish to quit without saving your work type
:q!

• ZZ will save your work and then quit

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 127

5.7 Moving around in command mode

• Many ways to move around a document

• You must be in command mode for the following :

– On a ‘friendly’ terminal you can use the arrow
keys

– Arrow keys are sometimes unavailable on
some terminals so vi has some alternatives

k
h l

j

• Although ‘awkward’ at first, these make your life
easier

– Always work, regardless of system type

– Fingers don’t move from the ‘main’ keyboard

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 128

5.8 Numeric Prefixes

• vi has the concept of ‘numeric prefixes’ or
‘multipliers’

– Vastly improves the usefulness of many
commands

• To supply a prefix simply type the number before
the command

– vi will then perform the command the
specified number of times.

• Note: In subsequent examples a small box
indicates the position of the cursor

• Starting with

The quick brown
fox jumped over
the lazy dog

and pressing 2l will result in

The quick brown
fox jumped over
the lazy dog

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 129

5.9 Further Movement

• vi also allows movements by units other than
characters.

• Moving by pages :

Key Result
^f Forward one screenful
^b Back one screenful
^u Forward half a screenful
^d Back half a screenful

• Moving by ‘words’ :

Key Result
w Go to beginning of next word
e Go to end of next word
b Go to start of previous word

• For these commands punctuation is not counted
as part of a word

• The commands W, E and B act the same but do
include punctuation in words

• NOTE: Case is important to vi commands, b and
B are different commands!

– The upper and lower case versions of
commands are usually related

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 130

5.10 Further Movement - Example

• From
This, he said, is an example

Key Result
w This, he said, is an example
W This, he said, is an example
e This, he said, is an example
E This, he said, is an example
b This, he said, is an example
B This, he said, is an example

• As with virtually all commands these may be
given a numeric prefix

• From the original start-point :

Key Result
2w This, he said, is an example
2W This, he said, is an example
2e This, he said, is an example
2E This, he said, is an example
2b This, he said, is an example
2B This, he said, is an example

• It’s not necessary to know these, but they make
life a lot easier when you get used to them!

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 131

5.11 Movement by lines

• We’ve already seen j and k

• What if we want to get to the beginning of the
next line1?

• Commands to move to the start or end of a line

Key Result
$ Move to the end of the current line
0 ^ Move to the beginning of the current

line

• Moving to the start of a previous or subsequent
line

Key Result
+
<RET>

Move to the beginning of the next line

- Move to the beginning of the previous
line

1A ‘line’ is the set of characters contained between newline characters, not necessarily what appears
on one line in your terminal

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 132

5.12 Movement by lines - Examples

• From :

This, he said,
is a most
interesting example

Key Result
+
<RET>

This, he said,

is a most
interesting example

- This, he said,
is a most
interesting example

0 ^ This, he said,
is a most
interesting example

$ This, he said,
is a most
interesting example

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 133

5.13 Inserting text

• You probably want more from a text editor than
the ability to move a cursor!

• At the bare minimum you need to be able to
insert text into a file

• Don’t worry, vi does this with ease

• As with everything else though there’s more than
one way

• Again while this may seem confusing you only
need to know the bare minimum

• But, the more you know, the easier your life
becomes!

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 134

5.14 i command

• To insert text before the cursor use the i
command

• This places vi into ‘insert’ mode

• Anything you type now is treated as text to insert
into the file rather than a command.

• You leave insert mode by typing Esc

• This is insertion at its simplest!

• To insert text after the cursor we use the a
(append) command

• Also :

Key Result
A Append at the end of the line
I Insert at the beginning of the line
o Create blank line below cursor for insertion
O Create blank line above cursor for insertion

• If your cursor keys work then you may move
around the line while in insert mode

• You can delete characters from the current
insertion using backspace

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 135

5.15 Multiple Insertion

• The insertion commands can take numeric
prefixes

• The result may be surprising!

• Consider the following sequence of keypresses
(From command mode) in an empty document

5i

• The result will be :

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 136

5.16 Deleting Text

• vi has a vast array of commands for deleting text

• The ‘odd-one-out’ is x which deletes the
character under cursor

• The rest of the deletion commands are
based-around the easy to remember d command

• d on its own does nothing.

• You have to tell it how much to delete

• The amount to delete is given by the keys you
used when studying movement
Example

Key Result
dw Delete to the beginning of the next word
3dw Delete 3 words
de Delete to the end of the word
db Delete everything before cursor to the beginning

of the word
d$ Delete to the end of the line
d0 Delete to the beginning of the line

• Two more special cases :

Key Result
dd Delete the entire line
D Delete the entire line

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 137

5.17 Changing Text

• Now we know everything we need to know to
delete text, insert new text and save our
changes.

• vi however likes to give us choices!

• If we find a word that is wrong, we can delete it
and insert the replacement.

• We’re actually ‘changing’ the word

• vi has a family of commands for just this, all
starting with c

• Similar to deletion, ie you can use cw to change a
word, c$ to change to the end of the line, or 3cw
to change three words

• What actually happens is that the designated
amount is deleted and you are placed in insert
mode

Key Result
cw Change a word
3cw Change 3 words
c$ Change to the end of the line
c0 Change to the beginning of the line

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 138

5.18 Copy and Paste

• One of the things we’re missing is the ability to
copy a piece of text and paste it somewhere else.

• vi does support this, but it calls it ‘yanking’ and
pasting

• All of the ‘yanking’ commands are prefixed with a
y and follow the same rules as before ie yw, y$,
3yw

• There are also yy and Y

• We paste text using p or P

– p pastes text after the cursor

– (Capital)P pastes it afterwards

• Deleted text is also considered to be yanked

– xp will transpose two characters

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 139

5.19 Finding your place

• You can search through a file using /

• You will get a / as a prompt on your status line

• To search for the string exam we type

/exam

and press <RETURN>

• If vi found your search string it will move the
screen to a relevant place and highlight it

• Pressing n will skip to the next occurence or N to
the previous

• It’s also possible to search backwards by using ?
instead of /

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 140

5.20 Miscellaneous Commands

• vi has a number of commands that don’t really fit
anywhere else

• ~ toggles the case of the character under the
cursor

• . repeats the last action

• u undoes the last action

– Linux vi supports multilevel undo, standard vi
does not

• J Join the current and following line

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 141

5.21 vi Exercises

1. Recognizing vi

(a) Start up vi with no filename to see what it looks like

(b) Exit vi and then start it again with the file /etc/passwd
(c) What can you tell about the file from this screen?

2. Getting used to vi

(a) Start vi with the the file /etc/passwd again

(b) Practice the basic movement commands on the file

(c) Check you can use both the cursors and hjkl to move
around

(d) Check the other movement commands work as
expected

3. Creating with vi

(a) Start vi with the filename vi_test. This should be a
new file

(b) Insert your name into the file and then save it and leave
vi

(c) Open the file again and check it still contains your name

(d) Next add some more names to the file, one on each line

(e) Go to a name roughly half way down your list. Check
you can insert a name on the line above, and on the
line below

(f) Check you can append to the end of lines and insert at
the beginning of lines

4. Movement and Multipliers

myss

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 142

(a) Check you can move through your file using
combinations of the movement keys and
numeric prefixes.
For example

i. Move 3 lines down at a time
ii. Move 2 words along
iii. Move to the beginning of the second line

below your cursor

5. Deleting with vi

(a) Try deleting various entities (Words, lines,
characters) from your file

(b) Check that these work with the numeric
prefixes

(c) You should be able to acheive all of the
following

i. Delete a word
ii. Delete to the end of the line
iii. Delete to the beginning of the line
iv. Delete the whole line
v. Delete 2 lines at once

vi. Delete 2 words at once (Either including or
excluding punctuation)

6. Changes with vi

(a) Repeat the exercises given for delete but do changes
instead of deletions

7. Yanking and Pasting

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 143

(a) Copy the first line of your file and paste it so that it
becomes the last line

(b) Paste it back at the top of the file

(c) Place the cursor at the very beginning of the file and try
the following keystrokes

i. yyjyyp
ii. 2yyp

(d) What was the difference and can you suggest why this
may be?

(e) Check that text deleted can be pasted back

8. Miscellaneous

(a) Place the cursor at the beginning of the file and try the
following command sequence:
yyp...
Explain the result

(b) Join all the lines of your file into one long line. Check
that the movement commands regarding lines work on
actual lines rather than the lines as seen on your
screen

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 144

5.22 vi Solutions

1. Recognizing vi

(a) Check you understand where the status line is, and
what the ~ characters mean

(b) :q should exit vi. If you want to make sure you’re in
command mode press <ESC> first. vi /etc/passwd
will start vi with /etc/passwd opened

(c) vi should tell you that this file is read only. This is
because you don’t have sufficient permissions to
change the file. vi should also tell you how many lines
and characters are in the file.

2. Getting used to vi

(a) vi /etc/passwd
(b) You should be fairly comfortable with the various

navigation methods such as moving left, right, up and
down, to the end or beginning of the line and moving up
and down by intervals of pages and half pages.

3. Creating with vi

(a) vi vi_test. The status line should tell you that it is a
new file and each line on the main screen should begin
with a ~ indicating lack of content

(b) To insert my_name simply type :
imy_name<ESC>
There are several ways to save and exit :

i. :w followed by :q
ii. :wq
iii. ZZ

(c) vi vi_test and check that the text you entered is
there. If not try again.

(d) There are several ways to do this :

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 145

i. When inserting using i you may type RETURN to
insert a newline character. it is possible therefore to
start with the cursor at the beginning of the file and
type :
iname1<RET>name2<RET>name3<RET> and so on

ii. Typing o or O will open a new line for insertion

(e) You should check that you understand which of o and O
inserts above, and which below

(f) Appending to the end of a line can be done using
either:

i. $atext_to_append<ESC>
ii. Atext_to_append<ESC>
Inserting at the beginning can be done using any of:

i. ^itext_to_insert<ESC>
ii. 0itext_to_insert<ESC>
iii. Itext_to_insert<ESC>

4. Movement and Multipliers

(a) You should practice moving around using the
movement characters with the numerical prefixes

i. 3j, 3+, or 3<RET>
ii. 3e, or 2w
iii. 2+, or 2<RET>

5. Deleting with vi

(a) You should make sure that the various deleting
methods work as you expected. If they surprise you, try
to work out how they do work

(b) Again check you understand the various possibilities

(c) The following represent only possible solutions

i. dw
ii. d$
iii. d0

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Introduction to Editing With vi v0.2 146

iv. dd
v. 2dd

vi. 2dw

6. Changing with vi

(a) The answers for this are the same as for delete except
substituting c for d in each case

7. Yanking and Pasting

(a) Move to the first line of the file and type yy, then move
to the end of the file and type p

(b) Move back to the top line of the file and type P which
will paste it above the current line

(c) Check you can tell the difference between the two
commands

(d) The ‘Yank buffer’ only holds the contents of one yank
operation. Both sets of keypresses yank the line we
start on and the line below. However the first does this
as two seperate operations and the ‘yank buffer’ only
remembers the most recent. The second example
yanks two lines at once, therefore placing both in the
yank buffer.

(e) You should try ddp and check that the text appears after
being deleted

8. Miscellaneous

(a) . repeats the last action. In this case it is a paste
operation. It could equally well have been an insert,
change word or delete operation.

(b) Starting at the top of your file pressing J will join the
following line to the current line. Repeat this until the
entire file is on one line. Pressing one of the down a
line keys (Such as j, + or <RET> should have no effect
despite the illusion that there is more than one line

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Module 6

Basic X-Windows

Objectives

• To explain

– How to start and use the X windowing system

– Basic concepts behind X-windows

– The differences between X and other GUIs

– X networking, window managers, desktop
environments

• On completion, you should be able to:

– start and stop X

– run shells and user applications under X

– set preferences for X

– change window managers and desktops

– use X over a network

147

Basic X-Windows v0.1 148

6.1 What X-Windows Is

X

• Is a windowing system

• Provides the basic graphic functions for Linux

• Was designed to provide windowing to any
workstation across a network, regardless of OS

• Operates on a client-server model

• Is an application, i.e. not a part of the Linux OS

• The standard Linux X server is Xfree86,
commercial alternatives include:

– Metro-X

– Accelerated X

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 149

6.2 X Needs Window Managers

• Window managers provide the controls which
allow you manipulate all graphic apps, e.g.

– move, size and stick

– open and close

– maximize, minimize, iconize

– title bars

• Window managers determine the ‘look and feel’
of X, e.g.

– Win95

– Motif

– Next Step

• Window managers may provide ‘virtual desktops’

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 150

6.3 Window Managers Are Applications

• Linux distributions contain many window
managers, e.g.

Manager Description
fvwm2 Motif-like look
fvwm95 Win95-like look for fvwm, Red Hat

default
twm Bare-bones Tab WM
olwm Open Look (Sun)
olvwm Virtual Screen Open Look
WindowMaker Next Step look, fast and lean
enlightenment Gnome-compatible WM,

powerful, rich, buggy

• window managers are X applications, thus:

– change manager without re-starting X

– change most X behaviour without re-starting

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 151

6.4 Desktop Environments

• X + WM alone don’t provide all facilities expected
of modern desktop environments, e.g.

– completely integrated drag and drop

– universal access to a clip board

• Desktop Environments bring these facilities to
Linux, bundling:

– desktop-capable window manager

– URL-based file manager

– facilities to share clipboard and other data
between optimized apps (inc. object linking)

• Linux currently has 3 main desktop
environments:

– CDE . . . the original commercial UNIX
standard

– KDE

– GNOME

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 152

6.5 Starting X

• Starting:

• Many possibilities

– You may be using the graphical xdm tool
which does it for you

– or login to command prompt then type
$ startx
if .xinitrc is not setup:

$ xinit
$ window manager filename

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 153

6.6 Stopping X

• Stopping:

<CTRL>+<ALT>+<BACKSPACE>

or:

use the window manager’s menus

– if you started via xinit, type the following in the
startup xterm:
$ exit

– If all these fail, switch to another virtual
terminal using the following keys, then kill X
from the command prompt:
<CTRL>+<ALT>+<F1> ... <F4>

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 154

6.7 Running Shells (Xterms) Under X

• Even under X, the most productive way to work
is often via the command line (i.e. a shell)

• The standard way to access a shell prompt under
X is via a terminal emulator called an xterm1

• An xterm shell behaves like a non-X shell, except
that you can cut and paste between it and X
applications

• Any number of xterms can be open at the same
time

• Using telnet, the xterms can provide shells to
any number of other hosts

• To start an xterm:

– From an already open xterm:
$ xterm &

– From a window manager menu (invariably
top-level)

1Linux provides other terminal emulators for specialised hosts, but they are rarely necessary

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 155

6.8 Running Applications from an xterm

• Character-based apps:

• Run exactly as they would outside X, unless the
xterm itself has been misconfigured

• X applications:

• Type the program’s file name at the prompt:

$ filename &

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 156

6.9 Running Applications from the window
manager

• Every window manager provides simple menu-
based access to applications

• Application Menus are usually accessible by
clicking Mouse Button 1 on:

– Buttons set into a task bar

– The desktop background (root window)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 157

6.10 Configuring X

• Default installations of Linux provide a fully
functional setup for using graphic X apps

• 2 different types of X configuration that system
administrators or users may need to change:

• Basic configuration of screen, mouse, keyboard
behaviour, fonts

– Could be a course in itself (classic O’Reilly
manual fills a bookshelf)

– Configuration files best edited via config tools
(see next Section 6.11)

• Behaviour of desktop objects (windows, icons,
taskbars, xterms)

– Window manager dependent

– Best configured via window manager
preferences

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 158

6.11 Basic X Hardware Configuration

• Basic configuration for hardware is defined in the
XF86Config file, located at:

/usr/lib/X11, linked to
/usr/X11R6/lib/X11 linked to
/var/X11R6/lib/

• XF86Config is easier to edit using the following
tools:

– XF86Setup . . . an X application which edits
most basic hardware preferences (Mouse,
Keyboard, Card, Monitor, Graphic Modes)

– Xf86config a character-based application
which prompts for the same settings

– Xconfigurator . . . Red Hat tool sets monitor,
card, screen mode, colour depth and
resolution with probing

– mouseconfig . . . Red Hat tool sets the mouse
type with probing. Useful for setting 2-button
mice to emulate 3-button types by
simulaneous clicking on both buttons

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 159

6.12 Basic X Software Configuration

• Under X, the user can configure just about every
conceivable aspect of the graphic display

• Users may need to change:

– Screen font sizes, styles, familes

– Pointer behaviour

– Screen colours

– Window manager

• All desktop environments and many window
managers provide graphic tools for changing
these configurations

• They can be set, on a system-wide or per-user
basis, in the following two files:

• .xinitrc

– to set the default window manager and style
to be used by the startx command

• .Xdefaults

– for fonts, pointers, colours, etc

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 160

6.13 Networked X - The Client-Server
Relationship

• X works in a client-server relationship

• The client is a user application which needs X
services to display itself on a given screen, e.g.
netscape

• The server is the application which provides
these services, e.g. Xfree86

• On a single-user Linux system, both apps reside
on the same system

• On a networked Linux system the user can run
an X application which is installed on a remote
system but see it displayed on the local monitor,
i.e.

• The client application (e.g. netscape) is remote
and the X server (e.g. Xfree86) is local

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 161

6.14 Principles of Running Remote X Apps

• The most common use for networked X is to run
client apps which are installed on remote hosts

• Reasons for running X apps on remote hosts:

• No local installation of the app

– Local processing or memory are insufficient

– No local access to data

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 162

6.15 How to Run Remote X Apps

• Start the local x server:

$ startx

• Enable dangerous lack of authentication

$ xhost +

• Open a telnet connection to the remote host:

$ telnet remote-hostname

• Set the your $DISPLAY environment variable on
the remote host so that applications re-direct
their graphic output to your local monitor:

$ export DISPLAY=oakleigh:0

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 163

6.16 Authentication

• Xservers only allow authenticated hosts to
connect

• On a trusted LAN you might use xhost in an
xterm $ xhost +beehive

• Or edit /etc/X0.hosts (0 refers to display 0), viz.

$ cat /etc/X0.hosts
landlord
kebab
samosa

• This is dangerous

– Allows hosts to grab your mouse and
keyboard

• Only use in a trusted environment

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 164

6.17 Better Authentication

• Can use cookie-based authentication

• Done for you if using xdm

• Clients look in /.Xauthority for cookies to feed
to server

• Server must be started with appropriate
argument

– Reads its /.Xauthority file

• Server only looks when started

– Too late to change once running

• Both server and clients must use the same
cookies

– Involves merging .Xauthority files using
xauth

• Hard to manage - most resort to xdm

• Documentation is not very penetrable

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 165

6.18 Basic X Exercises

1. Figure out how to get an X session running

2. In an xterm window type 'xterm' - what
happens?

3. In an xterm window type DISPLAY=xyz xterm
what happens?

4. Start up another xterm. Type echo hello into it -
you should get ’hello’ echoed. Select the echo
hello text so that it highlights - do this by clicking
the first mouse button and dragging. Move the
mouse to another xterm window; click into it to
make it active if necessary. You should be able to
paste the selected text by clicking the middle
mouse button (3 button mouse) or
simultaneously clicking both buttons on a 2
button mouse. Try it and see.

5. Find another machine on the same network. Use
xhost to tell it to accept connections from your
machine. Start an xterm on your machine but tell
it (using the DISPLAY variable) to display on the
remote machine.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Basic X-Windows v0.1 166

6. Go to the /usr/X11R6/bin directory. Try these
commands:

xeyes
xsnow
xfishtank
xbill
xdemineur
xclock

and any others that you like the idea of.

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Module 7

Linux and Shared File Systems

Objectives

The objectives of this chapter are as follows:

• To describe support for file sharing built into
Linux

• To examine Samba and NFS

• To gain an understanding of how and where to
use each

• To cover basic installation and setup of each

167

Linux and Shared File Systems v0.1 168

7.1 Samba

• Implementation of Server Message Block
protocol (SMB)

– Core of Microsoft’s file and print sharing

– Now known as Common Internet File System
(CIFS)

• Developed in Australia by Andrew Tridgell &
many others

• Info, sources, distributions at www.samba.org

• High performance – competitive with NT

• No kernel support, purely application code (As
server)

– Kernel client module not part of Samba

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

w

Linux and Shared File Systems v0.1 169

7.2 Samba Installation

• Will vary - may come preinstalled, may come as
RPMs or similar

• Key components are nmbd and smbd

– nmbd is the name services daemon; mostly
fit-and-forget

– smbd is the samba server; listens for
connections and then forks one copy per client

• Other tools & utilities exist, e.g. smbclient

• Configuration file is /etc/smb.conf

• Later versions come with the Samba Web
Administration Tool (swat); listens on port 901

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 170

7.3 Samba Basics

• Most likely to be started as daemons in init
scripts

• Can be done as run-on-demand via inetd but
unlikely (poor performance)

• Exclusively uses TCP/IP. Microsoft clients need
to be told to do so too — they may be using
NETBEUI

• Permits

– full file sharing, browsing and domain
controller services

– full access to printers

– extensive customising

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 171

7.4 Access to Files and Printers

• Not a good match between Linux access controls
and Win/NT

• Various options settable how to do this

• Attempt to match logged-on-Win-Username to
Linux user names and passwords

• Modern versions use encrypted passwords -
takes some setting up (see documentation)

• Also has concept of ‘guest’ users - may map to
‘nobody’ on Linux

• Take a look in your smb.conf file and read man
smb.conf

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 172

7.5 Testing Samba

• Use smbclient:

$ smbclient -L localhost
Added interface ip=192.168.0.129 bcast=192.168.0.255 nmask=255.255.255.0
Password:
Domain=[GBDIRECT] OS=[Unix] Server=[Samba 2.0.3]

Sharename Type Comment
-------- --- -------
www Disk WWW files
software Disk Installable Software
tmp Disk Temporary file space
admin Disk GBdirect admin files
printers Printer All Printers
IPC$ IPC IPC Service (Samba Server)
okirmt Printer
txtdj Printer
djrmt Printer
fax Printer

Server Comment
-------- -------
LANDLORD Samba Server

Workgroup Master
-------- -------
GBDIRECT LANDLORD
WORKGROUP KEBAB

• May need to provide a password, depends on
setup

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 173

7.6 Smbclient

• Numerous options:

smbclient servicename [password] [-s
smb.conf] [-B IP addr] [-O socket options][-
R name resolve order] [-M Net-BIOS name] [-i
scope] [-N] [-n NetBIOS name] [-d debu-
glevel] [-P] [-p port] [-l log basename] [-h]
[-I dest IP][-E] [-U username] [-L NetBIOS
name] [-t terminal code][-m max protocol]
[-W workgroup] [-T<c|x>IXFqgbNan] [-Ddirectory]
[-c command string]

• Example:

$ smbclient //landlord/admin
Added interface ip=192.168.0.129
bcast=192.168.0.255 nmask=255.255.255.0
Password: xxxxx
Domain=[GBDIRECT] OS=[Unix] Server=[Samba 2.0.3]

smb: \> ls
q3.dir 85 Tue Jun 29 13:01:44 1999
actwin2 D 0 Sun Mar 7 22:01:28 1999
courses D 0 Wed May 12 10:02:20 1999
cvs D 0 Mon Mar 22 12:36:13 1999
domreg D 0 Tue Sep 1 10:14:12 1998
finance D 0 Thu Jul 1 12:33:49 1999
informat D 0 Wed Jun 23 09:56:34 1999
julie D 0 Fri Jul 2 10:06:43 1999

............. etc

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 174

7.7 Samba configuration File

• Three sections to smb.conf

– global

– directories

– printers, if enabled, will export the printers
known in /etc/printcap

• Far too much detail to go into here

• Lots of help in the HOWTO files (should be
installed)

• Read the man pages

• Via the web

• and others

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 175

7.8 Testing Samba

• Use testparm and smbstatus

– testparm is used before starting Samba to
check that smb.conf is ok

– smbstatus reports status of Samba, all
connected clients and file share modes

Notes on Testing Samba

• Note that Samba is a server implementation only

• Cannot be use for Linux to import shared files,
only export them

• Some Linuxes have import facilities too — but
requires kernel support, (smbfs module)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 176

7.9 NFS (Network File System)

Basics

• NFS developed by Sun Microsystems in early
80’s

• Native method for file sharing between
Unix/Linux systems

• Stateless protocol

– means server keeps no state

– Renders server crashes ‘easily recoverable’

• Should be compatible between all Unix-like
systems

• Best used in a trusted environment, often not
highly secure

• Best where all user/group IDs are same

• Often used with Network Information Services
(NIS) to synchronise user/group IDs

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 177

7.10 NFS Basics . . . continued

• Systems are clients, servers or both

• Clients import shared filesystems

• Servers export shared filesystems

• Servers easy to implement via network daemons

• Clients require kernel modifications

• Unix/Linux systems normally work as both
already

• NFS is NOT Unix/Linux specific

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 178

7.11 Exporting File Systems

• Exporting handled by daemons rpc.nfsd and
mountd

• Must be running for NFS export to work

• Exported file systems listed in /etc/exports,
format is:

fsname hostname(flags) [hostname(flags)]

e.g:

/tmp *.blah.co.uk(ro)

• Exports /tmp to all systems belonging to domain
read-only; for full detail on flags use man exports

• Important flags are

– ro (read only)

– rw (read/write)

– all_squash (map all uid/gid to ’nobody’)

• After changing /etc/exports, send HUP signal
to nfsd and mountd

killall -HUP rpc.nfsd
killall -HUP mount

or

/etc/rc.d/init.d/nfs restart

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 179

7.12 Viewing exports

• Use showmount:

showmount -e
showmount -e hostname

• If you get RPC Port Mapper errors it may be that
the portmap daemon is not running on that host
or the host’s /etc/hosts.allow forbids you
access to the daemon

• Ensure that portmap is started or is running
(check with ps)

• Check that hosts.allow contains an entry to
permit you access, e.g.

– portmap: ALL
or

– portmap: .mydomain.co.uk

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 180

7.13 Importing File Systems

• As super user, mount a remotely exported
directory; e.g.

mount hostname:/tmp /mnt/remotetmp

• If successful, the export named /tmp on host
hostname is mounted on your mountpoint
/mnt/remotetmp

• Files accessed just as if local

• Remote host must be exporting the directory

• You must have access permission

• Your local mountpoint must exist

• Exactly like mounting a device (see Filesystem
Section)

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

Linux and Shared File Systems v0.1 181

7.14 Shared Filesystem Exercises

1. Samba

(a) Locate the file DIAGNOSIS.txt Read through it and use
it to check your installation

2. Samba

(a) Run testparm on your current smb.conf - pipe the
output through more to see the results

(b) Run smbstatus and explain to your neighbour what the
results mean

(c) Set up a share so that your /etc directory is exported
read-only and test it with smbclient

(d) Figure out how to export users’ home directories and
test your work

(e) Startup a web browser and look at port 901 — does
swat start? If so, browse around. If not, find out why not
(may not be installed), otherwise get it going.

3. NFS

(a) Set up your local host so you can use showmount to
show exported directories (if any).

(b) Find other hosts on your network which list exports

(c) Set up your host to export /tmp
(d) Go to some other system and mount the exported /tmp
(e) Play with file access on the mountpoint!

c© GBdirect Ltd, 1999 www.linuxtraining.co.uk

	1 Linux Overview
	1.1 Linux Background
	1.2 Unix Foundations
	1.3 Unix Standards
	1.4 Features of Linux & Unix
	1.5 Linux --- The Kernel of a System
	1.6 GNU/Linux Distributions
	1.7 The Many Faces of a GNU/Linux System
	1.8 The Filesystem
	1.9 Tasks/Processes
	1.10 Process Communication
	1.11 The Bourne Again Shell (bash)
	1.12 Interacting with a Linux `Terminal'
	1.13 Logging in to the System
	1.14 Changing Passwords
	1.15 Control Characters
	1.16 Software Tools: The UNIX Philosophy
	1.17 Re-directing I/O to and from Files
	1.18 Pipes & Tools
	1.19 Programmers Love Linux
	1.20 Running Commands
	1.21 Documentation
	1.22 Using the man pages (On-Line Manual)
	1.23 Overview Exercises
	1.24 Overview Solutions

	2 The Linux Filesystem
	Objectives
	2.1 Filesystem Overview
	2.2 Files
	2.3 Directories
	2.4 Directory Hierarchy
	2.5 Pathnames
	2.6 Current Directory
	2.7 Dot (.) and DotDot(..)
	2.8 Moving and Copying Files
	2.9 Removing Files
	2.10 Operations on Directories
	2.11 Inodes
	2.12 Inodes (continued)
	2.13 Links
	2.14 Hard links
	2.15 Soft links
	2.16 Access Control and UID
	2.17 Categories of Access Control
	2.18 Access Control - Example
	2.19 Changing Access Permission: chmod
	2.20 chmod symbolically
	2.21 chmod numerically
	2.22 umask
	2.23 Special Files - /dev
	2.24 Special Files - /proc
	2.25 Filesystem Structure
	2.26 /etc/fstab - Example
	2.27 Mounting Additional Volumes
	2.28 Mounting shared filesystems
	2.29 Summary
	2.30 Filesystem Exercises
	2.31 Filesystem Solutions

	3 Shell Command Line Interface
	Objectives
	3.1 Introduction
	3.2 Getting around the command line
	3.3 History
	3.4 Plumbing
	3.5 Output Redirection
	3.6 Input Redirection
	3.7 Combining Redirection
	3.8 Pipelines
	3.9 Background Processes
	3.10 Background Processes (continued)
	3.11 Background Processes and nohup
	3.12 Command Grouping and Sub-shells
	3.13 Process Management
	3.14 Signals
	3.15 Background Processes: top
	3.16 Filename Generation
	3.17 Quoting Mechanisms
	3.18 Shell built-in commands
	3.19 Command Line Exercises
	3.20 Command Line Solutions

	4 Basic Linux Tools
	Objectives
	4.1 Introduction
	4.2 Using Tools
	4.3 The On-Line Manual (man)
	4.4 Finding Files the Long Way (find)
	4.5 Locate Files in a Filesystem DB (locate)
	4.6 View and Concatenate Files (cat)
	4.7 View Large Files & Output (less)
	4.8 Viewing Parts of Files (head and tail)
	4.9 Listing File Information (ls)
	4.10 File Classification (file)
	4.11 Count Words, Lines, Characters (wc)
	4.12 Differences Between Files (diff)
	4.13 Compare Binary Files (cmp)
	4.14 Regular Expression Searches (grep)
	4.15 Sort and Merge Files (sort)
	4.16 sort --- Examples
	4.17 Display Unique Lines (uniq)
	4.18 Split Files (split)
	4.19 Splitting Files by Context (csplit)
	4.20 Store and Retrieve Archives (tar)
	4.21 Compression Utilities (gzip)
	4.22 Translating Characters (tr)
	4.23 Examples of tr Usage
	4.24 Text Manipulation (sed)
	4.25 Text Manipulation (awk)
	4.26 Linux Printing
	4.27 Printing documents
	4.28 Main Printing Tools
	4.29 Using lpr
	4.30 Using lpq
	4.31 Using lprm
	4.32 Basic Tools Exercises
	4.33 Basic Tools Solutions

	5 Introduction to Editing With vi
	Objectives
	5.1 Text editors under Linux
	5.2 vi and your terminal
	5.3 vi screen layout
	5.4 Opening files with vi
	5.5 vi Modes
	5.6 Saving, changing file and quitting
	5.7 Moving around in command mode
	5.8 Numeric Prefixes
	5.9 Further Movement
	5.10 Further Movement - Example
	5.11 Movement by lines
	5.12 Movement by lines - Examples
	5.13 Inserting text
	5.14 i command
	5.15 Multiple Insertion
	5.16 Deleting Text
	5.17 Changing Text
	5.18 Copy and Paste
	5.19 Finding your place
	5.20 Miscellaneous Commands
	5.21 vi Exercises
	5.22 vi Solutions

	6 Basic X-Windows
	Objectives
	6.1 What X-Windows Is
	6.2 X Needs Window Managers
	6.3 Window Managers Are Applications
	6.4 Desktop Environments
	6.5 Starting X
	6.6 Stopping X
	6.7 Running Shells (Xterms) Under X
	6.8 Running Applications from an xterm
	6.9 Running Applications from the window manager
	6.10 Configuring X
	6.11 Basic X Hardware Configuration
	6.12 Basic X Software Configuration
	6.13 Networked X - The Client-Server Relationship
	6.14 Principles of Running Remote X Apps
	6.15 How to Run Remote X Apps
	6.16 Authentication
	6.17 Better Authentication
	6.18 Basic X Exercises

	7 Linux and Shared File Systems
	Objectives
	7.1 Samba
	7.2 Samba Installation
	7.3 Samba Basics
	7.4 Access to Files and Printers
	7.5 Testing Samba
	7.6 Smbclient
	7.7 Samba configuration File
	7.8 Testing Samba
	Notes on Testing Samba

	7.9 NFS (Network File System)
	Basics

	7.10 NFS Basics …continued
	7.11 Exporting File Systems
	7.12 Viewing exports
	7.13 Importing File Systems
	7.14 Shared Filesystem Exercises

