
Shell
Using the command line

Orna Agmon

ladypine at vipe.technion.ac.il

Haifux

Shell – p. 1/55

TOC

Various shells

Customizing the shell

getting help and information

Combining simple and useful commands

output redirection

lists of commands

job control

environment variables

Remote shell

textual editors

textual clients

references Shell – p. 2/55

What is the shell?

The shell is the wrapper around the system: a
communication means between the user and the
system

The shell is the manner in which the user can interact
with the system through the terminal.

The shell is also a script interpreter. The simplest script
is a bunch of shell commands.

Shell scripts are used in order to boot the system.

The user can also write and execute shell scripts.

Shell – p. 3/55

Shell - which shell?

There are several kinds of shells. For example, bash
(Bourne Again Shell), csh, tcsh, zsh, ksh (Korn Shell).
The most important shell is bash, since it is available on
almost every free Unix system. The Linux system
scripts use bash.

The default shell for the user is set in the /etc/passwd
file. Here is a line out of this file for example:
dana:x:500:500:Dana,,,:/home/dana:/bin/bash

This line means that user dana uses bash (located on
the system at /bin/bash) as her default shell.

Shell – p. 4/55

Starting to work in another shell

If Dana wishes to temporarily use another shell, she can
simply call this shell from the command line:
[dana@granada ˜]$ bash

dana@granada:˜$ #In bash now

dana@granada:˜$ exit

[dana@granada ˜]$ bash

dana@granada:˜$ #In bash now, going to hit ctrl D

dana@granada:˜$ exit

[dana@granada ˜]$ #In original shell now

Shell – p. 5/55

chsh - Changing the default shell

If Dana wishes to change her default shell, she can use the
chsh command:
[dana@granada ˜]$ echo $SHELL

/bin/bash

[dana@granada ˜]$ chsh

Password:

Changing the login shell for dana

Enter the new value, or press return for the default

Login Shell [/bin/bash]: /bin/tcsh

[dana@granada ˜]$ echo $SHELL

/bin/bash

[dana@granada ˜]$ su dana

Password:

[dana@granada ˜]$ echo $SHELL

/bin/tcsh

Shell – p. 6/55

Every time you run it

For many programs, there is a file called
.{program-name}rc. This file contains commands to execute
automatically every time the program starts running.
For example:

.vimrc (used for gvim as well as vim)

.bashrc

.cshrc (used for both tcsh and csh)

Shell – p. 7/55

Where are my .*rc files?

Those files are usually located in the home directory.

All those files begin with a period, so they are not listed
using ls, only ls -a.

[dana@granada ˜]$ ls
dummy
[dana@granada ˜]$ ls -a
. .alias .bash_profile .cshrc .pinerc
.. .bash_history .bashrc dummy .viminfo

Shell – p. 8/55

Every time the shell starts - example

When updating the runcom file, it does not take effect
immediately in the terminal you are using, and you need to
source it (read it explicitely).
Let’s watch Dana teach her shells to sing:
[dana@granada ˜]$ tcsh

[dana@granada ˜]$ unalias lll

[dana@granada ˜]$ alias lll echo yehezkel

[dana@granada ˜]$ lll

yehezkel

[dana@granada ˜]$ bash

dana@granada:˜$ unalias lll

bash: unalias: lll: not found

dana@granada:˜$ alias lll="echo yehezkel"

dana@granada:˜$ lll

yehezkel

dana@granada:˜$

Shell – p. 9/55

Permanent Changes

To make this change happen every time we start the shell,
we insert the change in the .*rc file:
[dana@granada ˜]$ unalias lll
[dana@granada ˜]$ vi .cshrc #Here we add alias lll echo yehezkel
to the bottom of the .cshrc file
[dana@granada ˜]$ lll
lll: Command not found.
[dana@granada ˜]$ source .cshrc
[dana@granada ˜]$ lll
yehezkel
In bash, we state the same line (alias lll=’echo yehezkel’) in
the .bashrc file, and source it using the . command.

Shell – p. 10/55

Caution when sourcing rc file

If you make bad syntax error in the rc file of an
application, you may not be able to re-run it until you
have fixed the rc file.

This is most problematic when the program is the shell.

keep a back up copy of your rc file. Even better to keep
versions. See rcs, for example.

For shell rc files: keep an open terminal working without
sourcing the rc file, in case you messed up your own
shell.

Shell – p. 11/55

alias

Create short ways to say a long command using alias:

[ladypine@granada ˜]$ grep efnet ˜/.cshrc
alias efnet ’BitchX -Nan ladypine irc.inter.net.il’
[ladypine@granada ˜]$ which efnet
efnet: aliased to BitchX -Nan ladypine irc.inter.net.il
[ladypine@granada ˜]$

Remember to run a command in a certain way using
alias:

[ladypine@granada ˜]$ grep rm ˜/.cshrc
alias rm ’rm -i’

To use the original command once, escape the
command: \rm

To stop aliasing use unalias.

Shell – p. 12/55

alias in programming

Use full paths to commands when possible - on POSIX
systems, utilities are located in specific places.

When using commands without paths - use escaped
commands - you never know how the users aliased
their commands. aliases are not always available.
Depends on the shell.

Shell – p. 13/55

Shell variables

There are two kinds of shell variables: regular variables,
which are local, and environment variables, which are
inherited by the programs executed from the shell.

Setting environment variables: In bash

export var=value

In tcsh

setenv var value

Shell – p. 14/55

echo

The echo command quotes back what you told it to say.
Useful for debugging as well as communicating with the
user.
[ladypine@granada ˜]$ echo DISPLAY
DISPLAY
[ladypine@granada ˜]$ echo $DISPLAY
:0.0
[ladypine@granada ˜]$ echo $(DISPLAY)
Illegal variable name.
What went wrong in the last one??

Shell – p. 15/55

Hold fast to your output

backticks ‘command‘ holds the output of the command.
ladypine@granada:˜$ whatis pwd
pwd (1) - print name of current/working
directory
ladypine@granada:˜$ a=‘whatis pwd‘
ladypine@granada:˜$ echo $a
pwd (1) - print name of current/working
directory
ladypine@granada:˜$ a=$(whatis pwd)#bash specific
ladypine@granada:˜$ echo $a
pwd (1) - print name of current/working
directory
ladypine@granada:˜$

Shell – p. 16/55

What is this command?

Use the “which” command to know what the command
invokes really.
[dana@granada ˜]$ tcsh
[dana@granada ˜]$ which lll
lll: aliased to echo yehezkel
[dana@granada ˜]$ which swriter
/usr/lib/openoffice/program/swriter
To know more about commands:

man - old style, one long file

info - new, browseable

pinfo - even newer

whatis -short format

apropos - search the man pages
Shell – p. 17/55

grep - searching for text patterns

grep searches for regular expressions in the input. It can be
used to search for a line in a file, as seen in the previous
example:
[ladypine@granada ˜]$ grep rm ˜/.cshrc
alias rm ’rm -i’
It can also be used to find the file in which the expression is
mentioned. For example, in order to search my mail folders
(each is a file) for the word shell:
[ladypine@granada ˜]$ grep shell mail/*
Important switches: -n to give the line number. -i for case
insensitivity.

Shell – p. 18/55

|||||pipeline|||||

The output of one command can be piped into another
command by using a pipe. The output is then passed by
blocks to the next command.
Concating commands via a pipe is one of the most powerful
features of the shell.

Shell – p. 19/55

Example: apropos | grep

[dana@granada ˜]$ apropos keymap

install-keymap (8) - expand a given keymap and install it as boot-time keymap

keymaps (5) - keyboard table descriptions for loadkeys and dumpkeys

XChangeDeviceKeyMapping (3x) - query or change device key mappings

XFreeModifierMap XModifierKeymap (3x) [XChangeKeyboardMapping] - manipulate keyboard encoding and keyboard encoding structure

XGetDeviceKeyMapping (3x) - query or change device key mappings

XKeymapEvent (3x) - KeymapNotify event structure

XModifierKeymap (3x) - manipulate keyboard encoding and keyboard encoding structure

xmodmap (1x) - utility for modifying keymaps and pointer button mappings in X

XQueryKeymap (3x) - manipulate keyboard settings and keyboard control structure

[dana@granada ˜]$ apropos keymap | grep mod

xmodmap (1x) - utility for modifying keymaps and pointer button mappings in X

[dana@granada ˜]$

Shell – p. 20/55

which shell am I using now?

[dana@granada ˜]$ ksh

$ ps -p $$ | tail -1| awk ’{ print $4 }’

ksh

$ echo $SHELL

/bin/tcsh

$

Shell – p. 21/55

How did you pronounce that??

$ ps -p $$

PID TTY TIME CMD

2310 pts/3 00:00:00 ksh

$ ps -p $$| tail -1

2310 pts/3 00:00:00 ksh

$ ps -p $$| tail -1 |awk ’{ print $4 }’

ksh

$

Shell – p. 22/55

Reading File contents

lpr will print the whole file to the printer.

cat will print (to screen) the whole file.

zcat will do the same for gzipped files.

more and less will show the contents of the file by pages,
with limited ability of searching and scrolling it.

Shell – p. 23/55

Heads or tails?

head and tail will show the ends of the file.

[dana@granada ˜]$ head -1 dummy
a b a
dana@granada:˜$ tail -2 dummy
a c

dana@granada:˜$

Use tail -f to watch the end of a file which is being
updated. For example:

tail -f /var/log/messages

Shell – p. 24/55

Standard Input, Output, Error

The standard input (0) is usually the keyboard

the standard output (1) is usually the terminal screen

The standard error is (2) usually also the terminal
screen

All this can be changed.

Shell – p. 25/55

Output Redirection

In tcsh and bash:
ls > tmp

This means the same as writing in bash:
ls 1> tmp

Appending in tcsh and bash:
ls >> tmp

Shell – p. 26/55

Error and Output Redirection

In tcsh:
ls >& tmp

In bash:
ls 2>&1 > tmp

Example - Error redirection in bash:
dana@granada:˜$ ls kuku kukiya 2>tmp

kukiya

dana@granada:˜$ ls kuku kukiya

ls: kuku: No such file or directory

kukiya

dana@granada:˜$ cat tmp

ls: kuku: No such file or directory

dana@granada:˜$

Shell – p. 27/55

Command lists: list , ||

; - perform a list of tasks.
dana@granada:˜$ ls a*; ls d*

a

d dummy

dana@granada:˜$

|| - perform the next only if the previous commands
failed:
dana@granada:˜$ ls a* || ls d*

a

dana@granada:˜$

Shell – p. 28/55

Command lists, &&, subshell

&& - perfrom the next in the list only if the previous
commands succeded:
dana@granada:˜$./configure && make && make install

Or, in order to prepare and test this lecture:
[ladypine@granada shell]$ latex shell && dvips -G0 -Ppdf

shell.dvi && ps2pdf shell.ps && xpdf shell.pdf

() - a subshell. parameters do not take effect on the
outside.
dana@granada:˜$ export animal="king" ;

dana@granada:˜$ (export animal="lion"; echo $animal); echo $animal

lion

king

dana@granada:˜$

Shell – p. 29/55

The ground we work on

A process can run in the foreground or in the background.
When in the foreground, no other command can be dealt
with until the command returns. It can be moved to the
background:
dana@granada:˜$ sleep 300

Talk to me! Please, respond?

Maybe I will move you to the background by typing ctrl z?

[1]+ Stopped sleep 300

dana@granada:˜$ bg

[1]+ sleep 300 &

dana@granada:˜$ jobs

[1]+ Running sleep 300 &

Shell – p. 30/55

What shall we do with a foreground process?

It can also be killed:
dana@granada:˜$ sleep 500

[1]+ Stopped sleep 500

dana@granada:˜$ bg

[1]+ sleep 500 &

dana@granada:˜$ sleep 400

I will now kill the process in the foreground with ctrl c

dana@granada:˜$ jobs

[1]+ Running sleep 500 &

dana@granada:˜$

Shell – p. 31/55

Behind the Scenes - More Job Control

Tasks can be sent in the background to begin with:
dana@granada:˜$ sleep 4&

[1] 12175

dana@granada:˜$ fg

sleep 4

dana@granada:˜$

Tasks can be nice to begin with, or made nicer in due
time using renice.

Shell – p. 32/55

Special Variables

˜ , $HOME, ˜dana - home directory for the user (or for
dana, in this case)

$$ - the shell’s process ID

! - in bash - the process ID of the most recently
executed background (asynchronous) command.

Positional Variables: $1, $2 ...

! also uses to repeat a command which starts with a letter
combination:
[dana@granada ˜]$ ls -lt a*

-rw-r--r-- 1 dana dana 6 2004-02-28 09:48 a

[dana@granada ˜]$ ls -la a*

-rw-r--r-- 1 dana dana 6 2004-02-28 09:48 a

[dana@granada ˜]$!l

ls -la a*

-rw-r--r-- 1 dana dana 6 2004-02-28 09:48 a
Shell – p. 33/55

history

[dana@granada ˜]$ history

8 19:35 ls -lt a*

9 19:36 ls -la a*

10 19:36 ls -la a*

11 19:36 history

Shell – p. 34/55

PATH

The PATH is the list of directories that are searched for
when an application is requested.
dana@granada:˜$ echo $PATH
/usr/local/sbin:/usr/sbin:/sbin:/usr/local/bin:/usr/bin:/bin:
/usr/bin/X11:/usr/games:/home/dana/bin:/home/dana/dl/OpenOffice.org644/program/ :
/home/dana/dl/rpm/splint-3.1.1/bin
Adding dot ’.’ in the path is dangerous for two reasons:

Security: what if somebody placed an exeutable in your
directory, called ls, and it hides all other changes from
you?

Proper functioning. what if you created a program
called test, and it comes first in the path? then
/usr/bin/test will be ignored.

If you do decide to add . in your path, do it in the end of the
$PATH, to minimize mistakes. Shell – p. 35/55

Everyone has it and I don’t!?

If something is installed on the system, but not for you,
there may be several reasons:

The program is installed, but it is not in your $PATH.
Add it to your $PATH or add an alias to find the program.

The man page is installed, but you cannot find it.
Correct your $MANPATH.

You are not sure what to add to your path. You are not
even sure if it is installed at all. Use locate to find traces
of the mysterious program.

It was installed, but locate does not find it. Update
locatedb using updatedb, or wait for it to be updated - this
(usually happens|should happen) at night.

In the meantime, or from files not covered by locate,
use find.

In tcsh: It was installed and it is in your path, but it does
not work. Use rehash to update your available programs
in the current terminal.

Shell – p. 36/55

find

[ladypine@granada ˜]$ find . -name haifux -print

./haifux

[ladypine@vipe ˜]find . -name ’linux*’ -print

./public_html/linux4me.html

./public_html/linux4me_present.html

Shell – p. 37/55

Remote Shell

Secure: ssh, putty (ssh client for Windows)

Insecure: rsh, rlogin,telnet

Shell – p. 38/55

Display from a remote host

Your computer as an Xserver. The X server is the
computer which gives X services. Even if the “real”
server is a fast computer which provides CPU services,
mail services, etc.

Check the display on a local machine for two users.
ladypine owns the console, and dana does not:

[ladypine@granada ˜]$ echo $DISPLAY
:0.0
[ladypine@granada ˜]$ su - dana
Password:
[dana@granada ˜]$ echo $DISPLAY
DISPLAY: Undefined variable.

Shell – p. 39/55

Setting the display

Set the display on the terminal using the ip or domain
name of the computer you are sitting at:

In bash:
export DISPLAY=granada.merseine.nu:0.0

In tcsh:
setenv DISPLAY granada.merseine.nu:0.0

Note the $ before the name of the variable when it is
evaluated.

Shell – p. 40/55

Allow X forwarding

Allowing X forwarding is done on behalf of the Xserver - the
computer that is about to let others take over its screen.

Allow a terminal on vipe to use my x server:

xhost +vipe.technion.ac.il

Open a secure connection to a remote host, asking it to
display graphics on the current terminal as a Xserver:

ssh -X

Check the display:

xeyes

Shell – p. 41/55

Environment Variables

Environment variables are shell variables which are
passed on to child processes.

To find all environment variables use env (without
paramaters).

In tcsh also setenv (without paramaters).
Example:
dana@granada:˜$ env

HOST=granada

SHELL=/bin/tcsh

LC_ALL=he_IL

MAIL=/var/mail/dana

PATH=/usr/local/sbin:/usr/sbin:/sbin:/usr/local/sbin:/usr/sbin

PWD=/home/dana

HOME=/home/dana

LOGNAME=dana

Shell – p. 42/55

Gluing files together: cat,paste

[dana@granada ˜]$ cat a
a1
a2
[dana@granada ˜]$ cat b
b1
b2
[dana@granada ˜]$ cat a b
a1
a2
b1
b2
[dana@granada ˜]$ paste a b
a1 b1
a2 b2

Shell – p. 43/55

tac, sort

[dana@granada ˜]$ tac a
a2
a1
dana@granada:˜$ cat d
a1 4
a2 0
b 3
d 9
dana@granada:˜$ sort -k 2 d
a2 0
b 3
a1 4
d 9
dana@granada:˜$

Shell – p. 44/55

Differing files

diff. Useful keys: -B to ignore blanks, -u for unified
format.

patch. Apply a patch in the format given by diff -u.

cmp. Just tell me if they differ

zcmp. For gzipped files.

Shell – p. 45/55

Non Interactive Editors

awk = "Aho Weinberger and Kernighan", gawk.

Perl = "Practical Extraction and Report Language" with
the -e switch.

sed = Stream Editor

Shell – p. 46/55

Perl -e

[dana@granada ˜]$ perl -e ’$i="Dana Nama\n"; print $i;
$i=˜s/N/K/; print $i;’

Dana Nama
Dana Kama

Shell – p. 47/55

sed

sed is useful for changing files automatically by a set of
instructions. You can also describe it as a filter.
$sed ’s/to-be-replaced/replaced/g’ dummyfile
For example:
[dana@granada ˜]$ more dummy

a b a

a c

[dana@granada ˜]$ sed ’s/a/A/’ dummy

A b a

A c

[dana@granada ˜]$ sed ’s/a/A/g’ dummy

A b A

A c

[dana@granada ˜]$ more dummy

a b a

a c

Shell – p. 48/55

Editing in the terminal

vi, vim

xemacs -mw (or if the DISPLAY is not set)

pico

Shell – p. 49/55

Textual clients

nap - Linux napster client

lynx - textual browser (show accessing a journal and
printing it or sending it.

BitchX- irc client

mutt, pine - mail clients.

Shell – p. 50/55

Lynx - a textual html browser

Haifux - Haifa Linux Club - What is the Haifa Linux Club? (p1 of 4)

Haifux Logo

* Where do we meet?

* Upcoming Lectures

* Mailing Lists

* Give a Lecture

* Events

* Projects

* Logo

* Israeli Linux Links

* Israeli Linux HOWTO-s

* Linux Links

* Site Code

-- press space for next page --

Arrow keys: Up and Down to move. Right to follow a link; Left to go back.

H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list

Shell – p. 51/55

Pack to go

uuencode and uudecode

gzip and gunzip

dos2unix and unix2dos

convert

Shell – p. 52/55

Having a split personality

logname - the name of the logged in user.

whoami - the name of the user atached to the current
process
[ladypine@granada ˜]$ su dana

Password:

[dana@granada ladypine]$ whoami

dana

[dana@granada ladypine]$ logname

ladypine

last - who logged in lately

who - who is currently logged in
[dana@granada ˜]$ who

muli pts/1 Feb 28 17:52 (alhambra)

ladypine :0 Feb 20 19:26

ladypine pts/3 Feb 22 18:31 (:0.0)

Shell – p. 53/55

References used for this lecture

GNU’s bash
http://www.gnu.org/software/bash/bash.html

Linux Documentation project
http://www.tldp.org/HOWTO/Bash-Prog-Intro-
HOWTO.html

Advanced bash programing
http://www.tldp.org/LDP/abs/html/

Working more productively with bash 2.x by Ian
Macdonald http://www.caliban.org/bash/

Why not use csh for prgramming?
http://www.etext.org/Quartz/computer/unix/csh.harmful.gz

What does some strange unix command name stand
for? http://www.faqs.org/faqs/unix-faq/faq/part1/section-
3.html

Shell – p. 54/55

More references

Learning the bash Shell, 2nd Edition by Cameron
Newham, Bill Rosenblatt

http://www.amazon.com/exec/obidos/ASIN/1565923472/
calibanorg-20/102-5966084-5605729?creative=125581&camp=2321&link_code=as1

What’s up’s Hebrew shell guide

http://whatsup.org.il/modules.php?op=modload&name=FAQ&file=index
&myfaq=yes&id_cat=50&parent_id=0

Shell – p. 55/55

	TOC
	What is the shell?
	Shell - which shell?
	Starting to work in another shell
	{it chsh} - Changing the default shell
	Every time you run it
	Where are my .*rc files?
	Every time the shell starts - example
	Permanent Changes
	Caution when sourcing rc file
	{it alias}
	alias in programming
	Shell variables
	echo
	Hold fast to your output
	What is this command?
	grep - searching for text patterns
	|||||pipeline|||||
	Example: {it apropos} | {it grep}
	which shell am I using now?
	How did you pronounce that??
	Reading File contents
	Heads or tails?
	Standard Input, Output, Error
	Output Redirection
	Error and Output Redirection
	Command lists: list , ||
	Command lists, &&, subshell
	The ground we work on
	{small What shall we do with a foreground process?}
	Behind the Scenes - More Job Control
	Special Variables
	history
	PATH
	Everyone has it and I don't!?
	find
	Remote Shell
	Display from a remote host
	Setting the display
	Allow X forwarding
	Environment Variables
	Gluing files together: cat,paste
	{it tac, sort}
	Differing files
	Non Interactive Editors
	Perl -e
	sed
	Editing in the terminal
	Textual clients
	Lynx - a textual html browser
	Pack to go
	Having a split personality
	References used for this lecture
	More references

