Umicode Issues Iim Per/

Unicode Issues In Perl

‘—F Meir Guttman
| e-mail: meir@guttman.co.lil

I - . u
‘ :I. w "
f — ol —

mnw nriar 53 ,jR0L1 7°'ND @]

A Few Unicode Facts

Y Not “characters”, but “Code-Points” in the range of U+00’0000 to
U+10’FFFF

v« Short designation: U+hhhh
% Includes a “code point” for each and every conceivable character in all
conceivable “scripts™:

e “Scripts”, as opposed to “Languages”. For example, Chinese, Japanese
and Korean share the same script.

e 93 scripts as of v. 6.0, including for example Egyptian Hieroglyphs

e Numbers, General Punctuation, General Symbols, Mathematical
Symbols, Musical Symbols, Technical Symbols, Dingbats, Arrows, Braille
Patterns and more

¥« Hebrew occupies code points U+0590 to U+05FF

mnw nriam 53 RO 7°'ND @]

A Few Unicode Facts (cont.)

¥« Unicode includes rules for the support of Bi-Directional (Bi-Di) text
v« However, when "Unicode support” is claimed, it does not imply Bi-Di
support, and it seldom does!
e According to some claims, the official Unicode Bi-Di algorithm sucks...
¥ |t supports the notion of a “paragraph” and a forced new-line
(i.e., one that doesn’t terminate a paragraph)
¥ It supports all kind of text directions
e LTR, RTL, and one embedded within the other (Bi-Di),
e Top-to-bottom, bottom-up with “lines” going either from left-to-right or
right-to-left
e Boustrophedon: early Greek and Egyptian hieroglyphs used it. It Literally
means “ox-turning”

mnw nriam 53 RO 7°'ND @]

A Few Unicode Facts (cont.)

Example (Egytian Hieroglyphs)

—F

(B *x DI olph=
LU Y EX L

¥« Supports both fully formed and superimposed diacritics
(N Ix nino - "mip1") on a bare base code-point

Abstract Encoded
@ - 00C5
¥

‘\H“‘“ 212B

oML '
o
171 0041 030A

mnw nriam 53 RO 7°'ND @]

Unicede Issues iin Petrl

Encodings

Y “Encoding” only applies to I/0O and files:

Text files

Downloaded Internet pages

Software source code (hence strings in it)
Text streams

etc.

v¢ It is not (necessarily) how it is coded in memory

v« Databases, editors, compilers, etc. can read and/or write (e.g. UTF-8)
Unicode encoded text, but it doesn’t necessarily mean that they
Internally represent text as “encoded” Unicode!

¥¢ Current encodings are only UTF-8, UTF-16 and UTF-32
v¢ Older, deprecated encodings are UCS-2, UCS-4 and UTF-7)
¥ Practically, | never encountered anything other then UTF-8...

mnw nriam 53 RO 7°'ND @]

Encodings (cont.)

Y« UTF-8:
e variable length encoding, 1-4 bytes.

e code-points in the range 0-127 are identical to “pure” ASCII encoding
(please note, 7-bit ASCII, not 8-bit Latin-1!)

e Encoding:
Code Points U+xx xxXxx lst Byte 2nd Byte 3rd Byte 4th Byte
0aaa aaaa Oaaaaaaa
0000 Obbb bbaa aaaa 110bbbbb 10aaaaaa
cccc bbbb bbaa aaaa 1110cccc 10bbbbbb 10aaaaaa

000d ddcc cccc bbbb bbaa aaaa 11110ddd 10cccccc 10bbbbbb 10aaaaaa
e Hebrew UTF-8 encoding is therefore in the range of 0xD690 to OxD7BF

mnw nriam 53 RO 7°'ND @]

Encodings (cont.)

Y« UTF-16 encoding
e Variable length, one or two 16-bits units

e Code points in the range U+0000..U+FFFF are represented as a single
16-bit code unit.

e This range contains the vast majority of common-use characters for all
modern scripts of the world.

e Lookup “Unicode surrogate code points” for further details.

v« UTF-32: the simplest one of all, where each code point is directly
represented by a single 32-bit unit (word).

v« One must know beforehand for the last two encodings on what
“Endianess” was it originated, otherwise it would be impossible to
Interpret it.

¥ A Byte-Order-Mark (BOM) of U+FFFE, as the first code-point provides
such a clue.

mnw nriam 53 RO 7°'ND @]

he Perl UTF80 flag

Y¢ Internally, Unicode strings are encoded as either ISO-8859-1 or UTFS8.

v A flag, called "SvUTF8", a.k.a. "the UTF8 flag", is set to 1 for strings
that are UTF-8 internally, and to O for strings that are ISO-8859-1

v« Once the UTFS8 flag is set, Perl does not check the validity of the
UTF8 sequences further. This might be a security breach

v The :utf8 PerllO layer sets the UTF8 flag, without checking the byte
sequences, on incoming data.

¥ This Is not a bug or a flaw, but the very function of this PerllO layer.

¥ It is used internally by other layers (most importantly the :encoding
layer), after they have (safely) converted the input to internal Unicode.

¥¢ So, for your own protection, instead of the :utf8 PerllO layer, use
:encoding(UTF8) or :encoding(UTF-8)

mnw nriam 53 RO 7°'ND @]

Per|l Support

Y “Support” means dealing in Perl with Unicode in:
e Strings
e Textl/O
e Regular Expressions
e Normalization

mnw nriam 53 RO 7°'ND @]

Perl Strings

v As of Perl 5.8.1, the Perl native internal representation of strings is
Unicode.

v« You will find in many, even in canonical, Perl documents that this
representation is UTF-8.

¥ There are some indications that this is “almost true” (as in “almost
dead”???)

e If it Is indeed true, then IMHO it is not wise. Think of all the overhead
required to decipher the actual length in bytes...

¥ The good part is that you don’t need to know its internal
representation!

v« Even more, you should never use or rely on its internal structure. Here
today, gone tomorrow...

mnw nriam 53 RO 7°'ND @]

Perl Strings (cont.)

v« To make Perl’s recognize Unicode strings in your source code, you
must insert the pragma.
use utf§;
¥¢ Once you did that, you can use Unicode strings as you would any

other string: e.g., one can do translation as follows:
my %$ID_ types = (

'N1INT NT1UN 190N’ => 'IL ID',

'ZRIW'] N112aTN Dwoha 19on'! => 'IL CorpID',
'nwna 19on’ => 'IL CorpID',
'ZRIW] N1T19NT1WN DWI2 19ONn’ => 'IL PartnerID',
'1127T 190n’ => 'Passport',
'2"1M2 NITAXRDAN PR DwO 19on'! => 'ForeignCorpID' ’
'"nIR? mMiv'la 19ONn’ => 'SSN',

'R NAnTnNn 19on’ => 'OtherID'

);

$Eng ID type = $ID types{'nwia 190n'};

mnw i 33 ,jR011 7°'ND @]

An Important Note

v« From personal bad experience, even if :
e Your source script is saved in Unicode/UTF-8 (or other) encoding,
e It looks right in your Unicode/UTF-8/whatever favorit editor,

e The encoding specification in the "open" statement (more on this in a
moment) of output files is UTF-8, and/or...

e ... you placed a 'binmode' statement with its (optional) encoding as
Unicode/UTF-8 (

Y [t Will NOT produce legible Unicode (e.g. Hebrew) text in the output
file,

“ UNLESS a «use ut£8;» pragma is specified!!!
v¢ Again, | am referring to strings which are part of the script code!

v« However, Unicode text read as such from a file or downloaded from a
web site and then written out and properly 1/O encoded will be fine.
Only strings in the body of the code require this pragma!

mnw nriam 53 RO 7°'ND @]

Unicode Collation

¥« The Unicode Collation Algorithm (UCA) defines several levels of
collation strength:

Level 1. ignoring case and diacritics, examining basic characters only
Level 2. adds diacritic comparisons to the ordering algorithm

Level 3: adds case ordering

Level 4: adds a tiebreaking comparison (sorry, can’t explain... ®)
Level 4 is the default

¥¢ In simple terms, you can use collation strength to tell a UCA-aware

sort to ignore case or diacritics.
use Unicode: :Collate;

my $col = Unicode::Collate->new(level => 1);
my @list = Scol->sort(Qold list);

February 2013 mnnw nrin 53 ,jR0L 7°'ND @]

Perl Unicode I/O

v¢ Declaring 1/0O default encodings:
use open OUT => ":encoding (UTF-8)";
use open IO => ":encoding(iso-8859-7)";
(Importing non-Unicode text to a Unicode processing environment)
Y Or, on an “open” by “open” basis:
open (my $fh, "<:encoding(windows-1255)", $filename) ;
e This also avoids the “Wide character in print..” warnings
e There are other good reasons to use this 3-arguments version of “open”

Y To avoid “Wide character in print...” warnings in STDOUT and
STDERR, you are advised to place

binmode STDOUT, ":encoding (UTF-8)"“;

(which will nevertheless display garbage on an MS-Windows ‘cmd’ window when
emitting Hebrew text)

mnw nriam 53 RO 7°'ND @]

An Alternative Approach*

v« One can work with all texts as binary data (8-bit bytes) when
e l|oading,
e saving,
e passing,
e concatenating and...
e ... other simple operations
¥« Then, when the need arises to distinguish between chars and bytes,
one can apply:
e decode utf8 on bytes
e encode utf8 on chars when

¥ Which requires the use encode; pragma

* As per Mikhael Goikhman’s suggestion

mnw nriam 53 RO 7°'ND @]

DBD/DBI, MySQL and Unicode

my %conn _attrs = (RaiseError=> $SRaiseError,
PrintError => $PrintError,
AutoCommit => SAutoCommit,
mysql enable utf8 => 1);

my $dbh = DBI->connect
(8dsn, Suser name, Spassword, \%conn attrs);

mnw i 33 ,jR011 7°'ND @]

Hebrew HTML page scrapping example

¥« We downloaded a Hebrew HTML file, windows-1255 encoded, and to
build an aTML: : TreeBuilder ODbject from it. We start by:
my $root = HTML: :TreeBuilder->new() ;

v« Although there is a TreeBuilder method
$root->new from file($filename) {O do it directly...

Y ... it assumes a default UTF-8 file contents encoding.
It will therefore not work with a windows-1255 encoded file!

v¢ Rather, one must first "open" the file, thus giving us an opportunity to
specify its encoding and use another method to parse it:
open (my $fh, "<:encoding(windows-1255)", $filename) ;
$root->parse file($£fh);

(This method can accept either a file-name or a file-handle)

e

mnw nriam 53 RO 7°'ND @]

Unicode ISsues iim Per
Another Example
Y« What if we are downloading a page rather than a file:

use Encode gw(encode decode) ;

Smech->get ($url) ;
my S$page = $response->content () ;

my Sresponse

my $unicoded page = decode ("windows-1255", $page) ;
HTML: : TreeBuilder->new from content ($unicoded page) ;

my S$root

February 2013 mnnw nrin 53 ,jR0L 7°'ND @]

Unicode Regular Expressions

¥ The Unicode Consortium specified three levels of RegEx support,
“Basic”, “Extended” and “Tailored”, see Technical Standard #18.

v« Perl versions supports most of the first and very little of the other two
v Perl 5.14 added more support and Perl 5.16 even more
¥¢ You can usually use Unicode strings as RegEXx patterns

v¢ Unicode defines :
e Character names (e.g., “HEBREW LETTER ALEF”)
e Character properties (e.g., “Lowercase_Letter”)
e Script names (e.g., “Tamil”)
¥ You can specify all these by an escape \p{} and \r{}, e.g.:
e \p{Hebrew} (any Hebrew character)
e \P{HEBREW POINT HOLAM} (any character except one with a n%in)

mnw nriam 53 RO 7°'ND @]

Equivalence

¥« Unicode heroically tried to be as backward compatible as possible
with previous “locals™ and “code-pages”.

v« What made life difficult was:
e Diacritics: the lowercase letter "i" of the Spanish alphabet can be set as
either:
= A single code point U+00F1, or
= code point U+006E (Latin lowercase "n") followed by U+0303 (the combining
tilde "::")

e Multiple Diacritics and/or Ligatures:
m A given base character or a ligature can be assigned multiple additions.
» For example, Hebrew with both 71722 and x2znn 'yo:

U+0593 — HEBREW ACCENT SHALSHELET, and then by

b3
7 U+05E7 — HEBREW LETTER QOF followed by
I-r U+05B8 — HEBREW POINT QAMATS

» Since these might be entered manually, they might come in any order.

mnw nriam 53 RO 7°'ND @]

Equivalence (cont.)

v« Canonical Equivalence:

e Code point sequences that are defined as canonically equivalent are
assumed to have the same appearance and meaning when printed or
displayed.

e Those sequences should be displayed in the same manner, should be
treated in the same way by applications such as sorting or searching, and
may be substituted for each other.

Y« Compatibility Equivalence:
e Sequences assumed to have possibly distinct appearances, but the
same meaning in “some contexts”.

e For example, the code point U+FBOO (the typographic ligature "ff") is
defined to be compatible — but not canonically equivalent — to the
sequence U+0066/U+0066 (two Latin "f" letters).

February 2013 mnnw nrin 53 ,jR0L 7°'ND @]

Equivalence (cont.)

Y« Seqguences that are canonically equivalent are also compatible, but
the opposite is not necessarily true.

v« Compatible sequences may be treated the same way in some
applications (such as sorting and indexing), but not in others
e Sorting and searching might treat it the same
e Page rendering applications will most probably consider them distinct

¥« They may be substituted for each other in some situations, but not in
others.

mnw nriam 53 RO 7°'ND @]

Normalization

v« Unicode string searches and comparisons in text processing software
must take into account the presence of equivalent code points.

Y In the absence of this feature, users searching for a particular code
point sequence would be unable to find other visually indistinguishable
glyphs that have a different, but canonically equivalent, code point
representation.

¥« Unicode normalization replaces equivalent sequences of characters
so that any two texts that are equivalent will be reduced to the same
sequence of code points.

¥« Unicode defines two normal forms:

e A fully composed one, where multiple code points are replaced by
single points whenever possible;

e A fully decomposed one, where single points are split into multiple
ones. Each of these four normal forms can be used in text processing.

mnw nriam 53 RO 7°'ND @]

Unicode normalization forms

Unicode defines four normalization “forms” (of a given character):

NFD

Normalization Form (Canonical) Characters are decomposed by canonical equivalence, and
Decomposition multiple combining characters are arranged in a specific order.
NFC

Normalization Form (Canonical) Characters are decomposed and then recomposed by canonical
Composition equivalence.

NFKD

Normalization Form Compatibility = Characters are decomposed by compatibility, and multiple
Decomposition combining characters are arranged in a specific order.

NFKC

Normalization Form Compatibility = Characters are decomposed by compatibility, then recomposed
Composition by canonical equivalence.

mnw nriam 53 RO 7°'ND @]

Normalization (cont.)

v« Unicode provides standard normalization algorithms (plural...!)

v« These produce a unique (normal) code point sequence for all
sequences that are equivalent

¥ All four were implemented by Perl package (so | am told...):

(From the Unicode cookbook)
use Unicode: :Normalize;

while (<>) {

$ = NFD($_); # decompose + reorder canonically

}

continue {

print NFC($_); # recompose (where possible) + reorder canonically

}

mnw nriam 53 RO 7°'ND @]

More...

¥ "The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets (No
Excuses!)® by Joel Spolsky

http://joelonsoftware.com/articles/Unicode.html

v« The Unicode Standard

http://www.unicode.org/

(easy reading, all 670 pages of it...)
v¢ Unicode Standard Annex #9 Unicode Bidirectional Algorithm

http://www.unicode.org/reports/tr9/

v¢ Perl Unicode Tutorial
http://perldoc.perl.org/perlunitut.html

v¢ Unicode support in Perl
http://perldoc.perl.org/perlunicode.html

v Perl Unicode FAQ
http://perldoc.perl.org/perlunifag.html

mnw nriam 53 RO 7°'ND @]

and even more...

v« Analyzing Unicode Text with Regular Expressions
by Andy Heninger (IBM Corporation
http://icu-project.org/docs/papers/iuc26_regexp.pdf

v« UTF8 related exploit (PerIMonks post)
http://www.perlmonks.org/?node_id=644786

v¢ Unicode and Passwords by Ovid
http://blogs.perl.org/users/ovid/2012/02/unicode-and-passwords.html

v« Why Unicode Normalization Matters by chromatic
http://www.modernperlbooks.com/mt/2013/01/why-unicode-normalization-matters.html

¥ And, for a day-to-day work, until you are versed, use

Tom Christiansen’s Perl Unicode Cookbook
http://www.perl.com/pub/2012/04/perlunicook-standard-preamble.html

mnw i 33 ,jR011 7°'ND @]

http://www.modernperlbooks.com/mt/2013/01/why-unicode-normalization-matters.html

