
Google’s Android: An Overview
Yoni Rabkin

yonirabkin@member.fsf.org

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 1

Abstract

This lecture is an overview of developing applications for
Google’s Android. We start by introducing Android and its
components, we look at the anatomy of an Android
application, we explain basic components of the Android
application API including UI design and finally we say some
things about the development environment.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 2

Should I be giving this lecture?

I should because I...

wrote one Android application from start to finish

I shouldn’t because I...

wrote only one Android application from start to finish

don’t know Java

don’t use Eclipse

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 3

Legal Stuff

Portions of this work are reproduced from work created and
shared by the Android Open Source Project and used
according to terms described in the Creative Commons 2.5
Attribution License.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 4

What is Android?

Android is a bunch of software(a) released by Google and
the Open Handset Alliance(b).

(a)“platform” blah blah “framework” blah blah
(b)The alliance includes diverse members such as: China Mobile, Asus, T-Mobile

(U.S.), Softbank Mobile (Japan), Motorola, Samsung, etc.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 5

What isn’t Android?

any specific piece of hardware

“written entirely in Java”

“runs only Java”

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 6

What does Android include?

Linux Kernel (2.6) + drivers

Android Runtime: core libraries + Dalvik virtual machine

Libraries: OpenGL, SGL(a), Freetype, SSL, Sqlite,
Webkit, libc

XManager where X is some API component

Pre-built and packaged applications: Contacts, Phone,
Browser, Calendar, etc.(b)

Android SDK

(a)2D graphics
(b)http://source.android.com/

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 7

The Dalvik Virtual Machine

The Dalvik virtual machine...

is a register-based Java VM

is memory efficient

is designed to run multiple VMs efficiently (one per
application)(a)

has no Just In Time compilation

uses special byte-code

relies on the Linux kernel for low-level stuff like
threading

(a)communication via AIDL (Android Interface Definition Language)

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 8

Low-level Libraries

BSD-derived libc tuned for small devices

PacketVideo’s OpenCore multimedia code(a) which
supports: MPEG4, H.264, MP3, OGG, AAC, AMR,
JPG, and PNG(b)

libWebCore: Webkit based library to support the
browser and web-views

3D support for hardware or software rendering via
OpenGL

Freetype font rendering

Sqlite: relational database for application use

(a)http://www.packetvideo.com/products/core/index.html
(b)PNG is the standard for applications

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 9

App Anatomy: file structure

Selected files from a simple Android application structure.

./AndroidManifest.xml

./build.xml

./bin/Work.apk

./bin/classes/deliverator/foo/Work.class

./bin/classes/deliverator/foo/R.class

./res/layout/main.xml

./res/layout/setup.xml

./res/values/theme.xml

./res/values/strings.xml

./res/drawable/background.png

./res/drawable/overlay.png

./src/deliverator/foo/R.java

./src/deliverator/foo/Work.java

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 10

App Anatomy: file structure detail

Android can infer which resource to load by directory
structure.

./res/values-en/strings.xml

./res/values-fr/strings.xml

..for languages or...

./res/drawable-en-rUS-finger/

./res/drawable-port/

./res/drawable-port-160dpi/

./res/drawable-qwerty/

...for layouts and graphics, which can lead to...

./res/drawable-en-rUS-port-160dpi-...-qwerty-dpad-480x320/

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 11

App Anatomy: AndroidManifest.xml

AndroidManifest.xml is an essential part of the application
because it (amongst other things):

names the Java package for the application

describes activities, services, content providers, etc.

declares permissions the application must have

declares the minimum Android API level

declares Intents

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 12

App Anatomy: Intents

Intents convey requests between all different components
of the system.
The Intent Resolution mechanism revolves around
matching an Intent against all of the <intent-filter>
descriptions in the installed applications and
BroadcastReceivers.(a)

defined in AndroidManifest.xml or dynamically

belong to an Activity or BroadcastReceiver

can deliver data via RFC2396 URIs

(a)multiple intents all get called!

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 13

Intents: Code Example

AndroidManifest.xml

< a c t i v i t y andro id : name=" . Work " . . . >

< i n t e n t − f i l t e r >

<ac t i on andro id : name=" andro id . i n t e n t . ac t i on . MAIN" / >

<ac t i on andro id : name=" andro id . i n t e n t . ac t i on .SENDTO" / >

<category andro id : name=" andro id . i n t e n t . category .DEFAULT" / >

<data andro id : scheme=" smsto " / > . . .

Work.java

I n t e n t i n t e n t = g e t I n t e n t () ;

S t r i n g ac t i on = i n t e n t . ge tAc t ion () ;

i f (I n t e n t .ACTION_SENDTO. equals (ac t i on)) {

doStu f f (i n t e n t . getData () . getEncodedSchemeSpecif icPart () . . .

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 14

Activities

An activity presents a visual user interface for a single task.

always a subclass of the Activity base class

one application, many activities

one activity calls another (stack)(a)

given a default window to draw in

visual content defined by Views

have a life-cycle

(a)An activity can return a value on exit, but doesn’t have to.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 15

Activities: Code Example

Suppose that your application has a message composition
screen. This is an Activity. The UI would be implemented in
its own file, say: src/blah/blooey/Compose.java:

public class Compose extends A c t i v i t y

{

@Override

public void onCreate (Bundle savedInstanceState)

{

super . onCreate (savedInstanceState) ;

setContentView (R. l ayou t . main) ;

. . .

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 16

Activities Life-Cycle: Code Example

Activities call one another, so our Compose activity would
need to define what to do if it gets interrupted, calls another
activity or gets called:

@Override

protected void onResume () {

super . onResume () ;

dosomething () ; }

@Override

protected void onPause () {

super . onPause () ;

dosomethingelse () ; }

protected void onDestroy () { . . . }

protected void onStop () { . . . }
This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 17

Threads

Activity UI and your code run in the same process. So
non-trivial computations require a separate thread.

f i n a l Handler mHandler = new Handler () ;

f i n a l Runnable mUpdateResults = new Runnable () {

public void run () {

updateResul ts InUi () ; } } ;

. . .

Thread t = new Thread () {

public void run () {

mResults = doSomeThingHeavy (i npu t) ;

mHandler . post (mUpdateResults) ; } } ;

t . s t a r t () ;

. . .

private void updateResul ts InUi () {

i f (mResults == Something) { updateUI (mResults) ; } }
This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 18

Services

A service runs in the background for an indefinite period of
time. A service is like an Activity without a UI.

examples: getting data from the network, playing a
video

an activity can start a service

starts explicitly with Context.startService(intent)

starts implicitly with Context.bindService(intent)

provides a callback via its onBind() method.

runs until Context.stopService() or stopSelf()

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 19

Broadcast receivers

A broadcast receives and reacts to broadcast
announcements.

one application, many broadcast receivers

always a subclass of BroadcastReceiver base class

example broadcasts: low battery, call incoming, sms
arrives etc.

can start an activity or the NotificationManager

as fickle and subtle as any asynchronous process is(a)

(a)example: registering and unregistering in onResume() and onPause()

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 20

Broadcast receivers: Code Example

in some service of the system:

I n t e n t i n t e n t = new I n t e n t (SOMEACTION) ;

i n t e n t . pu tEx t ra ("name" , " value ") ;

sendBroadcast (i n t e n t) ;

...then in the app:

private BroadcastReceiver rece i ve r = new BroadcastReceiver () {

public void onReceive (Context context , I n t e n t i n t e n t) {

S t r i n g value = i n t e n t . ge tS t r i ngEx t ra ("name") ;

SomeActivityMethod (value) ;

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 21

Content providers

A content provider makes an application’s data available to
other applications.

data can be from files, sqlite DB or anything else(a)

always a subclass of ContentProvider base class

use a ContentResolver object and call its methods

(a)preferences are lightweight name-value storage

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 22

Content providers: Code Example

S t r i n g [] p r o j e c t i o n = new S t r i n g [] {

People . \ _ID ,

People . \ _COUNT,

People .NAME,

People .NUMBER} ;

Ur i con tac ts = People .CONTENT\ _URI ;

Cursor managedCursor = managedQuery (contacts ,

p r o j e c t i o n ,

null ,

null ,

People .NAME + " ASC") ;

managedCursor and managedQuery manage the cursor life-cycle for you.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 23

UI: somelayout.xml

Stack some layouts with widgets in boxes:

<LinearLayout

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="wrap_content">

<TextView

android:id="@+id/sometext"

android:text="@string/howareyougentlemen"

android:layout_width="fill_parent"

android:layout_height="wrap_content" />

...

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 24

UI: SomeActivity.java

Call the layout and connect to the widgets:

public void setSomeText (S t r i n g t e x t) {

TextView somewidget

= (TextView) f indViewById (R. i d . sometext) ;

somewidget . se tText (t e x t) ;

}

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 25

UI: gefingerpoken und mittengrabben

Find a button in the layout and connect it to a listener:

f i n a l Button somebutton

= (Button) f indViewById (R. i d . somebutton) ;

somebutton . se tOnCl i ckL is tener (new OnCl ickL is tener () {

public void onCl ick (View v) {

doSomething () ;

} }) ;

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 26

The Development environment

Eclipse(a) is the natural environment for developing Android
applications. However, real editors can be also used if you
are a real programmer.

The Android SDK integrates into Eclipse and helps the
otherwise addled programmer write code.

There are different versions of the SDK (1.0, 1.1, 1.5)(b)

Three important command line tools: "android",
"emulator" and "adb"

(a)I tried to load Eclipse for this lecture... it’s still loading.
(b)at the time of writing

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 27

tools/android

An avd is an Android Virtual Device. Use tools/android to
create, list, modify and remove avds.
$./android create avd -t 3 -n "1.5lvl3" \
--sdcard /path/to/disk/image
$./android list
Name: 1.5lvl3
Path: /home/foo/.android/avd/1.5lvl3.avd
Target: Google APIs (Google Inc.)
Based on Android 1.5 (API level 3)
Skin: HVGA
Sdcard: /path/to/disk/image

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 28

tools/emulator and the Console

The emulator runs a virtual Android device.
$./emulator @1.5lvl3

Once the emulator is running, the Console (optionally)
connects to an emulator instance and can issues
commands or retrieve status.
$ telnet localhost 5554
Android Console: type ’help’
OK

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 29

Console Examples

Example Console commands:

geo nmea GPGGA,123519,4807.038,N,01131.000,E ...

redir add tcp:5000:5554

power display/ac/status/present/health/capactiy

network delay gprs/edge/umts/none

network speed gsm/hscsd/gprs/.../full

gsm call/accept/busy/.../list/voice/status

sms send ...

Also from the command line:
$./emulator -netspeed gprs

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 30

tools/adb aka Android Debug Bridge

The Android Debug Bridge connects to a device or
emulator.
$./adb -s HT93LLZ00513 shell
$./adb -s HT93LLZ00513 install /path/app.apk

... or connect to the device logs(a)

adb # logcat
I/DEBUG(551): debuggerd: Apr 21 2009
I/vold (550): Android Volume Daemon
...

... or connect to the device’s sqlite DB
sqlite3
SQLite version 3.5.9
sqlite>

(a)useful with Log.X(TAG, info)

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 31

Publishing

Publishing allows others to install your software. Publishing
includes:

sign the application (not with the debug key)(a)

version the app: android:versionCode="2" and
android:versionName="1.1" (b)

provide android:label="@string/app_name" and
android:icon="@drawable/icon"

turn off debugging/logging, compile, sign and test

upload to the Android market

(a)same signature: permissions and upgrades made easy
(b)accessible via: getPackageInfo(java.lang.String, int)

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 32

Getting the Source

The source (about 2GB) is hosted at
http://source.android.com/, using Repo (some Python) and
Git.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 33

References and Adieu

http://developer.android.com/

http://android-developers.blogspot.com/

http://groups.google.com/group/android-beginners

http://groups.google.com/group/android-developers

Happy Hacking
This work is licensed under the Creative Commons Attribution 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/. – p. 34

	Abstract
	Should I be giving this lecture?
	Legal Stuff
	What is Android?
	What isn't Android?
	What does Android include?
	The Dalvik Virtual Machine
	Low-level Libraries
	App Anatomy: file structure
	App Anatomy: file structure detail
	App Anatomy: AndroidManifest.xml
	App Anatomy: Intents
	Intents: Code Example
	Activities
	Activities: Code Example
	Activities Life-Cycle: Code Example
	Threads
	Services
	Broadcast receivers
	Broadcast receivers: Code Example
	Content providers
	Content providers: Code Example
	UI: somelayout.xml
	UI: SomeActivity.java
	UI: gefingerpoken und mittengrabben
	The Development environment
	tools/android
	tools/emulator and the Console
	Console Examples
	tools/adb aka Android Debug Bridge
	Publishing
	Getting the Source
	References and Adieu

