udev overview for newbies

HAIEA RNV CLUB

March 27, 2006

Paramahansa Polo

paramahansa@gmail.com

HisTeorys & PAST SINCE TFORGOTTEN

* The steps for installing a new hardware peripheral on a
Mac might go a bit like this:

— Step 1: plug hardware in to Mac.
— Step 2: begin using hardware.

* Most of us would not even include these two items as
steps. The first is a physical necessity; the second is the
original and ultimate goal.

HisTeorys & PAST SINCE TFORGOTTEN

e At some point in Linux's history, support for new hardware
could easily require compiling a new kernel module,
becoming root, editing configuration files, loading said
module, checking dmesg, cursing, removing the module,
unplugging the hardware, plugging the hardware back in,
reloading the module and so on.

THE (PROBLEM

* Hot Swapping: the ability to remove and replace
components of a machine, usually a computer, while it is
operating
Example:
the Universal Serial Bus (USB), that allows a user to add
or remove peripheral components such as a mouse,
keyboard, or printer.

ey Was [T I 7HE PAST 7

/bin/tar Application
User space

Filesystem

\ 4
/dev/fdO (device file)
Kernel space l

Kernel
Td (device driver)

Hardware space v

ey Was [T I 7HE PAST 7

/bin/tar Application

User
Space
Filesystem

/dev/Td0O (device file)

O

1l = ram
Block device #2: |2 = fd

3 .=ala

da

Hardware space

WHAT ENTRY 1€ WHIeH DEVICE

* When the kernel finds a new piece of hardware, it typically
assigns the next major/minor pair for that kind of hardware
to the device.

Example:

on boot, the first USB printer found would be assigned the
major number 180 and minor number 0, which is
referenced in /dev as /dev/usb/Ip0. The second USB
printer would be assigned major number 180 and minor
number 1, which is referenced in /dev as /dev/usb/Ip1

ADVANTAGES

Simple

Flexible

Easy to understand
Easy to configure

Power abstraction at low cost

BUT: WIHAT 1T 7

o ACTION: the user rearranges the USB topology, perhaps
adding a USB hub to support more USB devices in the
system.

e RESULT: the USB probing order of the printers might
change the next time the computer is booted, reversing
the assignment of the different minor numbers to the two
printers

REQUIREMENTS &

» Support for “hot plug” devices (e.g, usb)
— consistent device names
— dynamic system config

* Good interactive user experience:
— Easy, consistent access

— Report device status
— Easy installation

WHAT WIE HAVE

* Dynamic system configuration:

— |t was limited to <500 diferent devices, in the entire linux
universe

— Limited to 16-250 instances of any particular device.

— With linux 2.6 the valid range of major numbers increased to
4,096. And more than a million minor numbers are available per
major number.

WHAT WIE HAVE

* Dynamic system configuration

— Device files are created for every possible device, including
devices that are not physically installed
Example:
On a machine running Red Hat's Fedora release 1, the /dev
directory holds more than 18,000 different entries.

WIHAT WIE WAVE 7/
e Consistent device names:

— Device names (specially SCSI and USB), may change acroos
systems boots.

... remember the example?

WHAT WIE HAVE

* (Good interactive user experience

JUSY OV UV

NEw ALTERNATIVES

 devfs: an automated and dynamic manager of device
nodes. A RAM-based filesystem, alternative to "real’
character and block special devices on your root
filesystem. Kernel device drivers can register devices by
name rather than major and minor numbers.

* udev: allows Linux users to have a dynamic /dev directory
and it provides the ability to have persistent device
names. It uses sysfs and /sbin/hotplug and runs entirely in
userspace.

CGopls TOR udev

® run in userspace

 dynamically creates/removes device files (dynamic /dev)
— allow everyone to not care about major/minor numbers

* provide consistent naming, if desired
— provide LSB standard names

* provide a user-space API to access information about
current systems devices.

N THE INIDDLE GAME

* The device model allowed, for the first time, the kernel to
build an in-memory tree of the devices it supported.
Example:

Both my mouse and my keyboard are connected to my USB hub,
which is connected to my third USB port, which is on my first PCI
bus.

 Such a rich hierarchy provides all sorts of opportunities to
the kernel. One of the most promising, however, was
sysfs

sYSTS EXIPORTS THE [N=MEMORY TREE
DEVICE HIERARCHY AS & TFUESYSTEM

* One directory lists all the buses on a system.

* For each bus, another directory lists all of the devices on a
given bus.

* Files for a given device could link to the associated
module.

» Walking the sysfs tree, therefore, would allow user space
to build a comprehensive picture of the system's physical
device hierarchy, exactly as the kernel sees it.

HoTPLVUG: ANOTHER KERNEL TFEATURE

* The kernel's hotplug infrastructure notifies user space
whenever a device is added to or removed from the
system.

* This allows applications to become aware of changes to
sysfs in real time. It also allowed for the creation of udev.

ENTER HALL

* HAL, originally hardware abstraction layer but now not an
abstraction of anything whatsoever, is a system-level
daemon that ties together hotplug, sysfs and udev in order
to provide a Linux system with a single, comprehensive
view of hardware, accessible via a standardized interface

ENTER HALL

* HAL makes it possible for an application to say, "give me
the device nodes of all input devices" or to ask, "is there a
camera connected to this computer?”

* HAL uses a nascent but always-promising project called
D-BUS as its communications mechanism.

DBUS

* On one side, D-BUS is a run-of-the-mill interprocess
communication (IPC) system-like CORBA, but a lot easier
to use.

* On the other side, however, D-BUS introduces the
concept of the system-wide message bus.

DBUS

* |n addition to per-user process-to-process communication,
D-BUS allows components in a Linux system to send out
signals, announcing events or providing information to all
who care to listen.

* Signals can announce when a network connection is
obtained or when the laptop battery is running low.
Interested applications higher up the stack can listen for
these signals and, upon receipt, react.

UDEY BEATURES

* Are separated in three projects:
— namedev
— libsysfs
— udev

NAMEDEY

* allows you to define the device naming separately from
the udev program.

* Currently only a single naming scheme is provided by
namedeyv; the one provided by LANANA, used by the
majority of Linux systems.

NAMEDEY

* Namedev uses a 5-step procedure to find out the name of
a given device. If the device name is found in one of the
given steps, that name is used. The steps are:

— label or serial number
— bus device number

— bus topology

— statically given name

— kernel provided name

LIBSY STS

* udev interacts with the kernel through the sysfs pseudo
filesystem.

* The libsysfs project provides a common API to access the
information given by the sysfs filesystem in a generic way.
This allows for querying all kinds of hardware without
having to make assumptions on the kind of hardware.

Where we've been . . .

'd like o be . ..

Where we

APPLICATIONS
HAL /

/etc/hotplug.d/default/20-hal.hotplug
-> /usr/libexec/hal.hotplug

.

DESKTOP

KERNEL

/etc/hotplug.d/default/
default.hotplug

kernel devices:

block
char /—\'
b /dev

4/}
sysfs

kernel

HOTPLUG
/etc/hotplug.\d/default/
1 10-udev/hot lug
N

FILESYSTEM

/etc/hotplug/<subsys>.agent

//f—*~/sb1d/hbtplug
/etc/hotplug.d/default/
=11 20 hal. otpluq

‘_n

/proc\

object tree

_—
e

\

/SYS

User ~ Deskiop™

space

rlotolily

/bin/tar

/sbin/hotplug gy

A {

File-
system

Yy S}

Kernel

S y S f S
kernel
object tree

Hardware

/sbin/udev

Utlzy

|

Device
y file

/dev/sda

User
space

rloroliy

File-
system

Kernel

Hardware

/sbin/hotplug

A

uhci hcd

|

usb.agent
modprobe

Device
\k driver
sd mod

User

space

rloroliy

File-

system

/Sys

/sbin/hotplug ;

{

2YS

Kernel

15

A

ol
-k

sysfs
kernel
object tree

Hardware

/sbin/udev

Uelzy

/dev/sda

Device
ydri ver

sd mod

User
space

Desktop -

|

A pplication

/bin/tar

rlotolily

/sbin/hotplug ; il

/

File- SVS
system SYE

515

Kernel

Hardware

/sbin/udev

Uelzy

/dev/sda

Device
ydriver

sd mod

HALE AQUITECTURE

Applications
L
HAL API
(queries, operations
notifications) Persistent Storage,
Device Info Files
Handles standard
'.I'.'-\.'|'.'.'.' '.'|.|'.|'I as I'I (HAL daemﬂn
and USE and class
Device lll such as bled A Callouts 05 specific programs invoket
Access e {device add or remove) when devices are added o
I removed

D5/Kernel interfaces
(detection, hotplug, monitoring)

05 kernel and base 05 services
(e.g. Linux 2.6 + linux-hotplug + udev)

Udev:

Provides the ability to name
devices in a persistent
manner using a flexible
rule-based system.

Udev Rules:

A udev rule defines the
mapping between a device's
physical attributes and the
desired device filename.

Udev Rules:

Found in files under
/etc/udev/rules.d
Describe any devices to be
named in a way that differs
from the default kernel name.

Sample Udev Rules

BUS="usb", \
SYSFS serial="w09090207101241330", \
NAME="1p color"

BUS="usb", \
SYSFS serial="HXOLL0012202323480", \
NAME="1p plain"

Sample Udev Rules

BUS="usb", SYSFS serial="W09090207101241330", \
NAME="1p color"

BUS="usb", SYSFS serial="HXOLL0012202323480", \
NAME="1p plain"

Map to:
mknod lp color c 180 1
mknod lp plain c 180 O

Keys available in udev rules:

BUS matches the bus type of the device;
examples of this include PCI, USB or
SCSI.

KERNEL
matches the “"kernel name" of the device.

ID matches the device number on the bus;
for example, the PCI bus ID or the USB
device ID.

Keys available in udev rules:

PLACE matches the topological position on
bus, such as the physical port a USB
device is plugged in to.

SYSFS filename, SYSFS{filename}
match any sysfs device attribute, such as

label, vendor, USB serial number or SCSI
UUID.

Keys available in udev rules:

PROGRAM
allows udev to call an external program
and check the result. This key is valid if
the program returns successfully.
RESULT
matches the returned string of the last
PROGRAM call. This key may be used in
any rule following a PROGRAM call.

Advanced udev rules

udev allows a number of printf-like string
substitutions to be used in the NAME,
SYMLINK and PROGRAM fields.

Also, a number of keys support a simple
form of shell-style pattern matching.

Sample udev rule

S cat /etc/udev/rules.d/90-sg.rules

sg[0-9] scsi scanner
KERNEL="sg[0-9]*", BUS="scsi", \
SYMLINK="scanner"

S 1s -1 /dev/scanner
lrwxrwxrwx 8 Feb 15 08:26 scanner -> sg0

Silly udev rule

KERNEL="[hs]d[a-z]", \
PROGRAM="name cdrom.pl %M m", \
NAME="%1lc¢c", SYMLINK="cdrom"

> On match of any disk device
> Run the Perl| program name cdrom.pl

> Use the first word of the program’s output
to name the device file

> Create a symlink called cdrom.

Silly udev rule

/dev might look like the following when using

this rule:

S cd /dev

$ 1s -1 cdrom
lrwxrwxrwx 8 Feb 15 08:26 cdrom -> Samiam-Astray

$ 1ls -1 Samiam-Astray
brw—-—————- 22, 64 Feb 15 08:26 Samiam-Astray

rloroli

Where & how to
get info to write
udev rules?

D YIS
A& DS

Where? From SysFS

$ udevinfo -q path -n /dev/sda

/block/sda

S 1ls /sys/block/sda

dev queue/ removable size
device range sdal/ stat

$ udevinfo -a -p /block/sda

Getting info from SysFS:
$ udevinfo -a -p /block/sda

udevinfo starts with the device the node belongs to and then
walks up the device chain, to print for every device found,
all possibly useful attributes in the udev key format.

looking at class device '/sys/block/sda':
SYSFS{dev}="8:0"
SYSFS{range}="16"
SYSFS{removable}="1"
SYSFS{size}="64000"

SYSFS{stat}=" 40 36
B 224 0 0 0
0 0 1224 1224"

Getting info from SysFS:

1. looking afL Ehe dewviee chain at

'/sys/devices/pci0000:00/0000:00:11.3/usb2/2-2":
BUS="usb"
ID="2-2"
SYSFS{bConfigurationValue}="1"
SYSFS{bDeviceClass}="00"
SYSFS{bDeviceProtocol}="00"
SYSFS{bDeviceSubClass}="00"
SYSFS{bMaxPower}="100mA"
SYSFS{bNumConfigurations}="1"
SYSFS{bNumInterfaces}=" 1"
SYSFS{bcdDevice}="0100"
SYSFS{bmAttributes}="80"
ShiSlio dimeiely steale s =
SYSFS{devnum}="2"
SYSFS{idProduct}="0100"
SYSFS{idVendor}="0d7d"
SYSFS{manufacturer}=" hy
SYSFS{maxchild}="0"
SYSFS {product}="USB DISK"
SYSFS{serial}="073A1D252211"
SYSFS{speed}="12"
SYSFS5{version} " 1.10"

A new udev rule

USB pen drive
KERNEL="sd[a-z]", BUS="scsi", \
SYSFS{serial}="073A1D252211" \
NAME="usb pen”, LINK="my pen"

Does it work?

A new udev rule:

ii. loeking: at the device ehdin at
'/sys/devices/pci0000:00/0000:00:11.3/usb2/2-2":

BUS="usb"

ID="2-2"

SYSFS{bConfigurationValue}q KERNEL="sd[a-2z]",
SYSFS{bDeviceClass}="00" BUS="scsi" ,

SYSFS{bDeviceProtocol}="00" . " N
SYSFS{bD(_:‘v__-L{,:eSubClasS}:..00.S‘j{SFS{serlal}= 073A1D252211
SYSFS{bMaxPower}="100mA" NAME="usb pen”,
SYSFS{bNumConfigurations}="' LINK="my pen"
SYSESIbNumInterfacesi=—" |-
SYSFS{bcdDevice}="0100"
SYSFS{bmAttributes}="80"
pYoES{detach cbatel— 08
SYSFS{devnum}="2"
SYSFS{idProduct}="0100"
SYSFS{idVendor}="0d7d"
SYSFS{manufacturer}=" 5
SYSFS{maxchild}="0"
SY¥YSkES{product}="USB DISK"
SYSFS{serial}="073A1D252211"
SYSFS{speed}="12"
SYSES{versiont-—" 1.10"

A new udev rule:

... leekineg &dF the device ehain af
' /sys/devices/pci0000:00/0000:00:11.3/usb2/2-2 ' :

BUS="usb"

ID="2-2"

SYSFS{bConfigurationValue}q KERNEL="sd[a-2]",
SYSFS{bDEViCEClaSS}="OO " BUS=IIquH ,

SYSFS{bDeviceProtocol}="00" . " N
SYSFS{}DD(_NJ-_(_,HESubclasS}==..OO.S‘j{SFS{serlal}= 073A1D252211
SYSFS{bMaxPower}="100mA" NAME="usb pen”,
SYSFS{bNumConfigurations}='| LINK= "my pen"
SYSFS{bNumInterfaces}=" 1" . 'T
SYSFS {bcdDevice}="0100" The fields in a udev rule must all
SYSFS{bmAttributes}="80" | match in the same sysfs directory
SYSHRGfdetach seare)— (8
SYSFS {devnum}="2"
SYSFS{idProduct}="0100"
SYSFS{idVendor}="0d7d"
SYSFS{manufacturer}=" =
SYSFS{maxchild}="0"
SYSkES{product }="1SB DISK"
SYSFS{serial}="073A1D252211"
SYSFS{speed}="12"
SYSES{versiont " 1.10"

COMPARINGS /dev, defs AND udev

Install & Configure “by Hand”

0 Hardware installed [0 working
[0 Driver code installed [0 working
[0 Other kernel code installed O working

[Device file installed [0 working

Install & Configure “by Hand”

vl Hardware installed vl working

[0 Driver code installed [0 working
modprobe foo dev

Check kernel messages:

dmesqg

tail -f /var/log/messages

Install & Configure “by Hand”

vl Hardware installed vl working

vl Driver code installed vl working

[0 Other kernel code installed OO working
modprobe fat

Check kernel messages:

dmesg
tail -f /var/log/messages

Install & Configure “by Hand”

vl Hardware installed

V] Driver code installed
vl Other kernel code installed

V] Device file installed

vl working

vl wor

vl wor

KING
KING

vl wor

KINg

Mzady o rocy

THE PROBLEMS OF STATIC /dev

P1- A static /dev is unwieldy and big. It would be nice to
only show the /dev entries for the devices we actually
have running in the system.

p2- We are (well, were) running out of major and minor
numbers for devices.

P3- Userspace programs want to know when devices are
created or removed, and what /dev entry is associated
with them.

THE PROBLEMS OF STATIC /dev

P4- Users want a way to name devices in a persistent
fashion (i.e. "This disk here, must _always_ be called
"boot_disk" no matter where in the scsi tree | put it", or
"This USB camera must always be called "camera” no
matter if | have other USB scsi devices plugged in or
not.")

CONSTRAINGS 1O CONSIDER

c1- No policy in the kernel!
c2- Follow standards (like the LSB)

c3- Must be small so embedded devices will use It.

DEVTES SOLYING THE THE PROBLEMS

P1- It would be nice to only show the /dev entries for the
devices we actually have running in the system.

devfs only shows the dev entries for the
devices in the system.

p2- We are running out of major and minor numbers for
devices.

devfs does not handle the need for dynamic
major/minor numbers

DEVES SOLVYING THE PROBLEMS

p3- Users want a way to name devices in a persistent
fashion.

devfs does not provide a way to name
devices in a persistent fashion.

p4- Userspace programs want to know when devices are
created or removed,and what /dev entry is associated
with them.

devfs does provide a deamon that userspace
programs can hook into to listen to see what
devices are being created or removed.

DEVTS AND THE CONSTRAINSTS

c1- No policy in the kernel!

devfs forces the devfs naming policy into the
kernel.

c2- Follow standards (like the LSB).

devfs does not follow the LSB device naming
standard.

DEVTS AND THE CONSTRAINSTS

c3- Must be small so embedded devices will use it.

devfs is small, and embedded devices use it.
However It is implemented in non-pagable
memory.

UDEY SOLYING THE PROBLEMS

P1- It would be nice to only show the /dev entries for the
devices we actually have running in the system.

using udev, the /dev tree only is populated for
the devices that are currently present in the
system.

UDEY SOLYING THE PROBLEMS

p2- We are running out of major and minor numbers for
devices.

udev does not care about the major/minor
number schemes. If the kernel tomorrow
switches to randomly assign major and minor
numbers to different devices, it would work
just fine

UDEY SOLYING THE PROBLEMS

p3- Users want a way to name devices in a persistent
fashion.

This Is the main reason udev is around. |t
provides the ability to name devices in a
persistent manner

UDEY SOLYING THE PROBLEMS

p4- Userspace programs want to know when devices are
created or removed,and what /dev entry is associated

with them.
udev emits D-BUS messages so that any
other userspace program (like HAL) can listen
to see what devices are created or removed.

It also allows userspace programs to query its
database to see what devices are present and
what they are currently named as.

UDEY AND THE CONSTRAINSTS

c1- No policy in the kernel!

udev moves _all_ naming policies out of the
kernel and into userspace.

UDEY AND THE CONSTRAINSTS

c2- Follow standards (like the LSB).

udev defaults to using the LSB device naming
standard. If users want to deviate away from
this standard (for example when naming some
devices in a persistent manner), it is easily
possible to do so.

UDEY AND THE CONSTRAINSTS

p3- Users want a way to name devices in a persistent
fashion.

udev is small (49Kb binary) and is entirely in
userspace, which is swapable, and doesn't
have to be running at all times.

How to “Just make it work”?

vl Hardware installed

vl Driver code installed
vl Other kernel code installed

vl working

rlotoli 2.4

Ve[V

V] Desktop & app support
Kernel changes in 2.6:

Expanded device numbers:
Major: 4,095
Minor: >1M

AL & D

U
>2.6?

UDEY A USER=SPPACE IMPLEMENTATION
OF DEVTES

* |nstead of a /dev created once, statically, udev updates
/dev on the fly, in response to the exact hardware
available to the system.

* More important, however, is that udev places intimate
knowledge of devices and their device nodes in user
space.

* Hotplug, sysfs and udev together allow user space a
complete view of the system's hardware.

SOME [LINKS

Udev HomePage
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.htmi

udev faq
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev-FAQ

udev writing rules
http://reactivated.net/writing_udev_rules.html

Page with good reference links about udev and friends
http://developer.osdl.org/maryedie/DCL/PSDN/Testing_udev_notes.html

http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev-FAQ
http://reactivated.net/writing_udev_rules.html
http://developer.osdl.org/maryedie/DCL/PSDN/Testing_udev_notes.html

TPIALLY

Thank you .. for Yyour patient.

