
Quick and Dirty Bash

Eli Billauer

http://www.billauer.co.il

Quick and Dirty Bash – p.1

Lectureoverview

Introduction

Loops

Conditionals and their use

Backticking and similar methods

Making GUI in scripts

Service scripts

Summary

Quick and Dirty Bash – p.2

Why commandline?

Use not limited to GUI design

No need to obey GUI's rules

GUI applications tend to be less stable

Easier to hack command-line tools

Command line applications usually “do the job” better

Repeatablilty (no memory from previous session)

Scriptability

Automation

Quick and Dirty Bash – p.3

When to do scripting in Bash

Do it in Bash...

... at shell prompt

... when there are a lot of application calls

... for system scripts

... if you don't want to get into the Perl vs. Python war

Don't to it in Bash (use Perl / Python instead) ...

... when the script itself should do something nontrivial

... when you want setuid root

Quick and Dirty Bash – p.4

Commonuseof bashscripts

.bashrc , .bash_profile , .bash_logout

Services going on and off

./configure

In make�les

One-liners at prompt

Quick and Dirty Bash – p.5

Shebangand friends

Comments in Bash scripts start with a #

Bash scripts start with #!/bin/bash (“shebang”)

Line breaks are bridged with “\ ” (backslash, like C)

Group commands: With '{ ' and '} '

Group commands in subshell: With '(' and ') '

... and a couple of special parameters:

$$ expands to the current process number. Good for temporary
�les:
tmpfile=delme-tmp-$$

$1, $2, $3,... are the arguments passed to the script

Quick and Dirty Bash – p.6

Loops in bash

for i in Hello World ; do echo $i ; done

while [1] ; do echo Wow ; done

for ((i=0 ; i<10 ; i++)); do echo $i; done

Note: If you want to kill a loop (in absence of CTRL-C), you
have to kill the bash process itself

Quick and Dirty Bash – p.7

Conditionals in Bash

Every exectable is a conditional by its return value:
while true ; do echo Wow ; done
while grep -q audio /proc/modules

do echo Audio! ; done ;

... but don't use true and false !

if [-d /etc] ; then echo Yes ; fi
'[' and '] ' mean Bash test , so it's the same as
if test -d /etc ; then echo Yes ; fi

'[[' and ']] ' are “enhanced” but not sh-compatible. These two
mean the same:
if [-d /etc -a -d /bin] ; then echo Yes ; fi
if [[-d /etc && -d /bin]] ; then echo Yes ; fi

Quick and Dirty Bash – p.8

Conditionals in Bash(cont.)

Now some binary operations. Below, all “Yes” will be printed, all
“No” will not.

if [["12" == 12]] ; then echo Yes ; fi

if ["12" = 012] ; then echo Yes ; fi

if [["12" == 012]] ; then echo No ; fi

if ["12" -eq 012] ; then echo Yes ; fi

if [["12" -eq 012]] ; then echo No ; fi

if [["12" -eq 12]] ; then echo Yes ; fi

According to the man page, -eq and friends are arithmetic and
== is stringwise lexicographic. (This is not Perl)

= is like == in test context (Yuck!)

Conclusion: RTFM, and think twice if you want to use this

Quick and Dirty Bash – p.9

Usingconditionals

while loops as we've seen

rm -f *.o && make
... which is the same as
if rm -f *.o ; then make ; fi

Note the semicolons!

'[', '] ', '[[' and ']] ' are tokens. Keep spaces around them!

Note the quotation marks! For example, -n is true when the
string that follows has nonzero length. The �rst two works like
you would expect, the third doesn't!
empty=""; if [-n "$empty"] ; then echo No ; fi
empty=""; if [[-n $empty]] ; then echo No ; fi
empty=""; if [-n $empty] ; then echo Yes ; fi

Quick and Dirty Bash – p.10

Arithmetics

The name of the game is '((' and ')) '

echo $((1+1)) and $((2**8))

All arithmetics is with integers

Conditionals and autoincrement (instead of for-loop):
i=0; while ((i<10)); do echo $((i++)); done

i=1; while ((i<256)); do echo $((i*=2)); done

Quick and Dirty Bash – p.11

Example

#!/bin/bash

if (($# < 1));
then echo "Usage: $0 destination-path"; exit 1;

fi

if [-a $1];
then echo "File/dir $1 already exists"; exit 1;

fi

mkdir $1 || { echo "Failed to mkdir $1"; exit 1; }

...

Quick and Dirty Bash – p.12

The almighty backtick

Run a command (or commands) and organize standard output
as arguments delimited by spaces:

$ which bash
/usr/bin/bash

$ ls -l `which bash`
-rwxr-xr-x 1 root root 478720 Feb 19 2002 /usr/bin/bash

$ echo `find . -true`
. ./file1 ./file2 ./file3

Quick and Dirty Bash – p.13

The “f or i in” loop

for i in file1.c file2.c
do grep -H \#define $i ; done

for i in *.c ; do grep -H \#define $i ; done

for i in {a,b,c}-{d,e,f} ; do echo $i; done

for i in `find . -name *.c`
do grep -H \#define $i ; done

Quick and Dirty Bash – p.14

The problemswith backticks

File names with spaces: “my file.doc ” looks like two �les:
“my” and file.doc

Quotation marks don't solve this!

May exceed maximal number of arguments for Bash.

Loop starts only when backticked command �nishes: Slow
response

The solution: Use the read builtin command:

find . -name *.c | while read i ;
do grep -H \#define "$i" ; done

Note the quotation marks – they take care of the spaces in the
�le names!

Quick and Dirty Bash – p.15

Readthe “�nd” man page!

This is not really about Bash, but still...

for dir in / ; do
find /$dir -newer /etc/computer-bought-date \

! -type d >> $1/backup-files;
done;

{ tar -c --to-stdout --preserve \
--files-from $1/backup-files; } | \

{ cd $1 && tar --preserve -v -x ; }
... or who's eating my disk space?
find . -true -printf "%k %p\n" | sort -nr

Quick and Dirty Bash – p.16

The xargsutility

Show me 20 images at a time:
find . -name *.jpg -print0 | \

xargs --null -n 20 kview

To xargs white spaces in the input are delimiters, unless in
quotes, or as above: print0 and --null

The -printf "\"%p\"\n" is the �lename within double
quotes (what if the �le name includes quotes?)

If we change the second line to
xargs --null -P 4 -n 20 kview

we get four instances (windows) of kview . Close one, another
will pop up!

The inserted arguments don't have to be last ones with
--replace=XXX

Quick and Dirty Bash – p.17

String operations

find . -name *.wav | while read i ;
do lame -h "$i" "${i%.*}.mp3" ; done

Or more speci�c:

find . -name *.wav | while read i ;
do lame -h "$i" "${i%.wav}.mp3" ; done

%and %%chop off suf�x es. # and ## chop off pre�x es.

%%and ## are greedy. %and # match minimal characters.

Remove path (�le name only): ${i##*/}

Remove “./ ”: ${i#./}

If no match is found, the string is left as is

Quick and Dirty Bash – p.18

My CD imagegenerationscript

... and another string expansion:
#!/bin/bash

for i in cd-* ; do
item=${i:3:5};
today=`date +%y%m%d`;
echo Now creating volume $today$item...
mkisofs -R -J -graft-points -V $today$item \

-o $i.iso "/=$i/";
done

${i:3:5} is character 3 to 5 (counting from zero) in $i .

Later on we'll see how Bash is used to burn the images...

Quick and Dirty Bash – p.19

The printf builtin command

Of course there's a printf !

This is how we �nd a unique dirXXXX directory name:
i=1; while name=`printf dir%04d $i` && [-e $name]

do ((i++)) ; done ;

Note: No comma between format string and argument(s)

Quick and Dirty Bash – p.20

Quick and dirty GUI

This simple script is for serial CD burning
for i in *.iso;

do Xdialog --msgbox "Now burning $i" 0 0;
cdrecord dev=0,0,0 speed=24 -v -eject -dao $i;

done;

Xdialog prompts the user with an “OK” message box

File selection (and then view):
Xdialog --stdout --fselect "" 0 0 | \
{ read i ; kview "$i" ; }

Basically a front end for GTk

The text-based version is dialog

Several other widgets (edit boxes, progress meters, log boxes
etc.)

Quick and Dirty Bash – p.21

Functions

$ Hello() { echo I got $1 ; return 5 ; }
$ Hello World
I got World
$ echo $?
5

The function is run in the current environment

No new process is created

Quick and Dirty Bash – p.22

The casestatement

#!/bin/bash
case "$1" in
[Hh]ello)

echo "Nice to meet you"
;;

[Bb]ye)
echo "See you later"
;;

*)
echo "I am so glad to hear!"

esac

The ;; is not a “break” statement. It's syntactically necessary.

Quick and Dirty Bash – p.23

Servicescripts

Scripts can be found somewhere like /etc/rc.d/init.d
(distribution dependent)

The scripts are called during bootup according to the services
setup

... or by service xxx start . Or stop. Or restart.

The scripts are called with one argument, typically start ,
stop , restart , status , or other service-speci�c commands.

Let's see one!

Quick and Dirty Bash – p.24

Summary

We have seen:

Loops and how to make meaningful loop indexes (�le names...)

Conditionals and arithmetics

Backticking, xargs and while-read loops

String operations

Basic GUI

We went to the safari (... service scripts)

Bash is not Perl – it doesn't cooperate

... but it's still very useful

Quick and Dirty Bash – p.25

Further reading

man bash

Orna's lecture about Bash:
http://www.haifux.org/lectures/92-sil/

Advanced Bash-Scripting Guide:
http://tldp.org/LDP/abs/

Linux Files and Command Reference:
http://www.comptechdoc.org/os/linux/commands/

Quick and Dirty Bash – p.26

Thank you!

The slides were made with LATEX
(prosper class)

Quick and Dirty Bash – p.27

	Lecture overview
	Why command line?
	When to do scripting in Bash
	Common use of bash scripts
	Shebang and friends
	Loops in bash
	Conditionals in Bash
	Conditionals in Bash (cont.)
	Using conditionals
	Arithmetics
	Example
	The almighty backtick
	The ``for i in'' loop
	The problems with backticks
	Read the ``find'' man page!
	The xargs utility
	String operations
	My CD image generation script
	The 	exttt {printf} builtin command
	Quick and dirty GUI
	Functions
	The case statement

