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Why commandline?

Use not limited to GUI design

No need to obey GUI's rules

GUI applications tend to be less stable

Easier to hack command-line tools

Command line applications usually “do the job” better

Repeatablilty (no memory from previous session)

Scriptability

Automation
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When to do scripting in Bash

Do it in Bash...

... at shell prompt

... when there are a lot of application calls

... for system scripts

... if you don't want to get into the Perl vs. Python war

Don't to it in Bash (use Perl / Python instead) ...

... when the script itself should do something nontrivial

... when you want setuid root
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Commonuseof bashscripts

.bashrc , .bash_profile , .bash_logout

Services going on and off

./configure

In make�les

One-liners at prompt
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Shebangand friends

Comments in Bash scripts start with a #

Bash scripts start with #!/bin/bash (“shebang”)

Line breaks are bridged with “\ ” (backslash, like C)

Group commands: With '{ ' and '} '

Group commands in subshell: With '( ' and ') '

... and a couple of special parameters:

$$ expands to the current process number. Good for temporary
�les:
tmpfile=delme-tmp-$$

$1, $2, $3,... are the arguments passed to the script
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Loops in bash

for i in Hello World ; do echo $i ; done

while [ 1 ] ; do echo Wow ; done

for ((i=0 ; i<10 ; i++)); do echo $i; done

Note: If you want to kill a loop (in absence of CTRL-C), you
have to kill the bash process itself
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Conditionals in Bash

Every exectable is a conditional by its return value:
while true ; do echo Wow ; done
while grep -q audio /proc/modules

do echo Audio! ; done ;

... but don't use true and false !

if [ -d /etc ] ; then echo Yes ; fi
'[ ' and '] ' mean Bash test , so it's the same as
if test -d /etc ; then echo Yes ; fi

'[[ ' and ']] ' are “enhanced” but not sh-compatible. These two
mean the same:
if [ -d /etc -a -d /bin ] ; then echo Yes ; fi
if [[ -d /etc && -d /bin ]] ; then echo Yes ; fi
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Conditionals in Bash(cont.)

Now some binary operations. Below, all “Yes” will be printed, all
“No” will not.

if [[ "12" == 12 ]] ; then echo Yes ; fi

if [ "12" = 012 ] ; then echo Yes ; fi

if [[ "12" == 012 ]] ; then echo No ; fi

if [ "12" -eq 012 ] ; then echo Yes ; fi

if [[ "12" -eq 012 ]] ; then echo No ; fi

if [[ "12" -eq 12 ]] ; then echo Yes ; fi

According to the man page, -eq and friends are arithmetic and
== is stringwise lexicographic. (This is not Perl)

= is like == in test context (Yuck!)

Conclusion: RTFM, and think twice if you want to use this
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Usingconditionals

while loops as we've seen

rm -f *.o && make
... which is the same as
if rm -f *.o ; then make ; fi

Note the semicolons!

'[ ', '] ', '[[ ' and ']] ' are tokens. Keep spaces around them!

Note the quotation marks! For example, -n is true when the
string that follows has nonzero length. The �rst two works like
you would expect, the third doesn't!
empty=""; if [ -n "$empty" ] ; then echo No ; fi
empty=""; if [[ -n $empty ]] ; then echo No ; fi
empty=""; if [ -n $empty ] ; then echo Yes ; fi
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Arithmetics

The name of the game is '(( ' and ')) '

echo $((1+1)) and $((2**8))

All arithmetics is with integers

Conditionals and autoincrement (instead of for-loop):
i=0; while ((i<10)); do echo $((i++)); done

i=1; while ((i<256)); do echo $((i*=2)); done
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Example

#!/bin/bash

if (($# < 1));
then echo "Usage: $0 destination-path"; exit 1;

fi

if [ -a $1 ];
then echo "File/dir $1 already exists"; exit 1;

fi

mkdir $1 || { echo "Failed to mkdir $1"; exit 1; }

...

Quick and Dirty Bash – p.12



The almighty backtick

Run a command (or commands) and organize standard output
as arguments delimited by spaces:

$ which bash
/usr/bin/bash

$ ls -l `which bash`
-rwxr-xr-x 1 root root 478720 Feb 19 2002 /usr/bin/bash

$ echo `find . -true`
. ./file1 ./file2 ./file3
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The “f or i in” loop

for i in file1.c file2.c
do grep -H \#define $i ; done

for i in *.c ; do grep -H \#define $i ; done

for i in {a,b,c}-{d,e,f} ; do echo $i; done

for i in `find . -name \*.c`
do grep -H \#define $i ; done
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The problemswith backticks

File names with spaces: “my file.doc ” looks like two �les:
“my” and file.doc

Quotation marks don't solve this!

May exceed maximal number of arguments for Bash.

Loop starts only when backticked command �nishes: Slow
response

The solution: Use the read builtin command:

find . -name \*.c | while read i ;
do grep -H \#define "$i" ; done

Note the quotation marks – they take care of the spaces in the
�le names!
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Readthe “�nd” man page!

This is not really about Bash, but still...

for dir in / ; do
find /$dir -newer /etc/computer-bought-date \

! -type d >> $1/backup-files;
done;

{ tar -c --to-stdout --preserve \
--files-from $1/backup-files; } | \

{ cd $1 && tar --preserve -v -x ; }
... or who's eating my disk space?
find . -true -printf "%k %p\n" | sort -nr
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The xargsutility

Show me 20 images at a time:
find . -name \*.jpg -print0 | \

xargs --null -n 20 kview

To xargs white spaces in the input are delimiters, unless in
quotes, or as above: print0 and --null

The -printf "\"%p\"\n" is the �lename within double
quotes (what if the �le name includes quotes?)

If we change the second line to
xargs --null -P 4 -n 20 kview

we get four instances (windows) of kview . Close one, another
will pop up!

The inserted arguments don't have to be last ones with
--replace=XXX
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String operations

find . -name \*.wav | while read i ;
do lame -h "$i" "${i%.*}.mp3" ; done

Or more speci�c:

find . -name \*.wav | while read i ;
do lame -h "$i" "${i%.wav}.mp3" ; done

%and %%chop off suf�x es. # and ## chop off pre�x es.

%%and ## are greedy. %and # match minimal characters.

Remove path (�le name only): ${i##*/}

Remove “./ ”: ${i#./}

If no match is found, the string is left as is
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My CD imagegenerationscript

... and another string expansion:
#!/bin/bash

for i in cd-* ; do
item=${i:3:5};
today=`date +%y%m%d`;
echo Now creating volume $today$item...
mkisofs -R -J -graft-points -V $today$item \

-o $i.iso "/=$i/";
done

${i:3:5} is character 3 to 5 (counting from zero) in $i .

Later on we'll see how Bash is used to burn the images...
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The printf builtin command

Of course there's a printf !

This is how we �nd a unique dirXXXX directory name:
i=1; while name=`printf dir%04d $i` && [ -e $name ]

do ((i++)) ; done ;

Note: No comma between format string and argument(s)
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Quick and dirty GUI

This simple script is for serial CD burning
for i in *.iso;

do Xdialog --msgbox "Now burning $i" 0 0;
cdrecord dev=0,0,0 speed=24 -v -eject -dao $i;

done;

Xdialog prompts the user with an “OK” message box

File selection (and then view):
Xdialog --stdout --fselect "" 0 0 | \
{ read i ; kview "$i" ; }

Basically a front end for GTk

The text-based version is dialog

Several other widgets (edit boxes, progress meters, log boxes
etc.)
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Functions

$ Hello() { echo I got $1 ; return 5 ; }
$ Hello World
I got World
$ echo $?
5

The function is run in the current environment

No new process is created
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The casestatement

#!/bin/bash
case "$1" in
[Hh]ello)

echo "Nice to meet you"
;;

[Bb]ye)
echo "See you later"
;;

*)
echo "I am so glad to hear!"

esac

The ;; is not a “break” statement. It's syntactically necessary.
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Servicescripts

Scripts can be found somewhere like /etc/rc.d/init.d
(distribution dependent)

The scripts are called during bootup according to the services
setup

... or by service xxx start . Or stop. Or restart.

The scripts are called with one argument, typically start ,
stop , restart , status , or other service-speci�c commands.

Let's see one!
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Summary

We have seen:

Loops and how to make meaningful loop indexes (�le names...)

Conditionals and arithmetics

Backticking, xargs and while-read loops

String operations

Basic GUI

We went to the safari (... service scripts)

Bash is not Perl – it doesn't cooperate

... but it's still very useful
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Further reading

man bash

Orna's lecture about Bash:
http://www.haifux.org/lectures/92-sil/

Advanced Bash-Scripting Guide:
http://tldp.org/LDP/abs/

Linux Files and Command Reference:
http://www.comptechdoc.org/os/linux/commands/
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Thank you!

The slides were made with LATEX
(prosper class)
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