
Concurrent Versioning System
Introduction to CVS

Tzahi Fadida - TzahiFadida@MyRealBox.com
Special thanks for reviewing and coauthoring to Orna Agmon

Introduction to CVS – p.1/38

Agenda

CVS - why do I need it?

CVS - what is it?

CVS - what is it NOT?

CVS - ok I am convinced, what now? - Internals

CVS - Getting more into it. - Philosophy

CVS - OK Show me the money!!!! - Examples

CVS - where can I find out more?

Introduction to CVS – p.2/38

CVS - why do I need it? - Ver Control

Ever worked on a project on your local computer
and the H.D crashed?

Ever worked on a file, saved, then changed your
mind and worked hours to restore the mistake?

Ever tried to find out what change you did a month
ago?

Does your boss breathe down your neck to increase
productivity?

Introduction to CVS – p.3/38

CVS - why do I need it? - team work

Ever needed to work with a team?

Ever had to work on the same file with a team mate
and needed to wait until he finished?

Ever had to merge a whole branch of a project with
changes that another team member had just made?

Ever wanted to trace your progress or others’?

Introduction to CVS – p.4/38

CVS - A solution

Enters CVS!

CVS will answer all of the above mentioned
problems and more.

You only need to know a small part of CVS’s
features in order to get started.

Introduction to CVS – p.5/38

CVS - what is it?

CVS is a source code management system, based on
a client- server model.

Retains projects in a centralized manner.
All changes in every file are traceable.
Allows to retrieve specific project revisions.
Allows access in a distributed manner.

Introduction to CVS – p.6/38

CVS - what is it NOT?

CVS is not really user friendly- this is what
graphical front ends are for.

CVS is not an excuse not to backup.

CVS does not come instead of talking to fellow
developers and deciding on policies and future
directions.

CVS doesn’t read minds, you have to tell it what to
do.

CVS is NOT proprietary! I.e. you don’t have to pay.
In fact, its GPL’d.

Introduction to CVS – p.7/38

A CVS Client

A simple text client is usually installed on Linux.

For Unix, Cervisia and many other clients, since
CVS was originally written for unix.

WinCVS Windows users.

jCVS II for java users.

Introduction to CVS – p.8/38

A CVS Server

Existing internet servers, such as
http://www.sourceforge.org or
http://www.berlios.de.

Existing servers inside your organization.

Download a server for Linux from
http://www.cvshome.org.

Download a server ported for Windows
http://www.cvsnt.org/wiki/.

The place where the server keeps its information is called

a repository. It is recommended to allow at least 3 times

the current size of the projects for the CVS repository.
Introduction to CVS – p.9/38

http://www.sourceforge.org
http://www.berlios.de
http://www.cvshome.org
http://www.cvsnt.org/wiki/

CVS - How does it do that?

CVS lower layer is actualy RCS - Revision Control
System. CVS allows you to manage entire software
projects ontop of RCS.

RCS
RCS automates the storing, retrieval, logging,
identification, and merging of revisions.
RCS is useful for text that is revised frequently,
including source code, programs, documentation,
graphics, papers, and form letters.

CVS also supports storage of binary files.

Introduction to CVS – p.10/38

Why shouldn’t I use RCS then?

RCS has a strong locking, i.e. no one can work with
it except the locker. CVS has weak locking:
multi-checkout and concurrent editing is possible.

CVS supports various types of actions taken when a
reserved file is touched (for example, sending an
email)

CVS has the capability to work decentralized, while
RCS is centralized and works locally.

CVS handles complex projects better.

RCS has a smaller command set and is simpler to
use. CVS has a steep learning curve.

Introduction to CVS – p.11/38

Graphic CVS Clients

For large projects it is sometimes better to use a
graphical cvs client, for the following advantages:

Graphical representation of a file increments.

Quick access to macros.

Visual repesntation of changes to files.

Easier to remember rarely used features.

See documentation for the client of your choice, in order

to set it up and connect it to the server.

Introduction to CVS – p.12/38

CVS Basic Work Methods

Importing, checking out, and commiting.

When you have a project outside CVS, you import
your project (a directory with sources) to the cvs
(using the cvs client or gui).

When you have a project inside CVS, and you want
a local copy, you check out a module (your project
name) that was created on the cvs to a working
directroy.

When you finish editing something, (and you have at
least verified that it compiles) you commit (check
in) your changes to the server using your client, with
a comment on what was changed.

Introduction to CVS – p.13/38

CVS Phylosophy

A good practice is to commit your changes when
you can write a significant change in the comment of
the commit action and that the change will not break
what was previously working. This way, your team
will be able to be more productive and release more
versions as the projects develop. In addition, the
files can be compiled and debugged independently
by other parties.

It might be beneficial to create a ChangeLog file, in
addition to the comments, summarizing project-wise
the changes that were made. The comments here
will document the files that were actually changed.
Please note that there are macros that can
automatically generate a ChangeLog.

Introduction to CVS – p.14/38

CVS - Simultanous Check Out

NO exclusive checkouts like RCS’s “co -l”.

More then one person can checkout, change a file
and commit changes at the same time.

This is accomplished by a conflict mechanism that
allows you to merge your changes to previous
changes entered, even if the changes were made
against different versions.

Introduction to CVS – p.15/38

CVS - Conflicts

A conflict can occur if two or more cvs users
checked out a file and changed it. Let’s designate
this file with version 1.1

The first person changed it and committed the
changes to the server. Now the file is designated 1.2
at the server.

The second person now also wants to commit his or
her version 1.2 of the file, not knowing yet it was
already committed.

Introduction to CVS – p.16/38

CVS - Solving Conflicts

If the changes are far from each other in the file, the
second person gets a “Merge” message.

If the changes were done on the same lines (or close
lines) the second person gets a “Conflict” message
from the server, indicating that the user version (1.2)
of the file needs to be merged with the file on the
server (also version 1.2).

The second user uses some good merge software and
(hopefully) in a few seconds commits version 1.3 of
the file to the server.

Introduction to CVS – p.17/38

CVS Using the Command line Client

The command line tool can be used either locally or
over a communication protocol.

Note that CVS does not allow working as root.

Introduction to CVS – p.18/38

CVS setting ENV variables

Set the environment variable CVSROOT to indicate
the repository.
[devGuy@LinuxRules devGuy]$ CVSROOT=:pserver:tzahi@127.0.0.1:/home/cvs/master

[devGuy@LinuxRules devGuy]$ export CVSROOT

If its not a csh descendant, use - setenv CVSROOT

:pserver:tzahi@127.0.0.1:/home/cvs/master

[devGuy@LinuxRules: /pop2sms]$ cvs login

Logging in to :pserver:tzahi@127.0.0.1:2401/home/cvs/master

CVS password:

CVSROOT can also be a simple directory, for
example “/cvs”

Other environment variables will define, for
example, the text editor used to insert comments
when checking in.

Introduction to CVS – p.19/38

Example: Importing a module

A project can be built of several modules. A simple
project will have only one module.

Let’s work on a project directory called myProject
containing a file named myFile.c

cvs import -m "message" myProject vend1 release2

The above must be run from within the myProject
directory. This will add the project to the repository
as a module.

Nothing has changed in the current directory. In order to

work with CVS we must check out the module we just

checked in.
Introduction to CVS – p.20/38

Example: Checking out a module

[devGuy@LinuxRules devGuy]$ cvs co myProject

cvs server: Updating myProject

U myProject/myFile.c

[devGuy@LinuxRules devGuy]$ ls myProject

myFile.c CVS

Now we have a new directory created inside the current

directory, called myProject. Inside it there is a CVS di-

rectory, which holds CVS local version info. Now we can

work on our project files.

Introduction to CVS – p.21/38

Example: Exporting a module

Export is required to checkout the project without the
CVS Sub-Directories, so it’s used mostly to release a
working version.

[devGuy@LinuxRules devGuy]$ cvs export -r
HEAD myProject

Introduction to CVS – p.22/38

Example: Merging Changes

After making some changes for whatever reasons, we
now have to submit our changes to the repository.
[devGuy@LinuxRules myProject]$ cvs update

cvs server: Updating .

M myFile.c

[devGuy@LinuxRules myProject]$ cvs commit -m "what changes were made?"

cvs commit: Examining .

Checking in myFile.c;

/home/cvs/master/myProject/myFile.c,v <– myFile.c

new revision: 1.2; previous revision: 1.1

done

Introduction to CVS – p.23/38

Example: Reviewing Changes

[devGuy@LinuxRules myProject]$ cvs log myFile.c

RCS file: /home/cvs/master/myProject/myFile.c,v

Working file: myFile.c

head: 1.2

branch:

locks: strict

access list:

symbolic names:

arelease: 1.1.1.1

avendor: 1.1.1

keyword substitution: kv

Introduction to CVS – p.24/38

Reviewing Changes- Cont

-total revisions: 3; selected revisions: 3

-description:

-revision 1.2

-date:2003/08/08 22:20:53;author:tzahi;state:Exp;lines: +3 -2

-what changes were made?

-revision 1.1

-date: 2003/08/08 21:59:22; author: tzahi; state: Exp;

-branches: 1.1.1;

-Initial revision

-revision 1.1.1.1

-date:2003/08/08 21:59:22;author:tzahi;state:Exp; lines:+0 -0

-no message

-===

Introduction to CVS – p.25/38

Actually seeing the changes

-[devGuy@LinuxRules myProject]$cvs diff -c -r1.1 -r1.2 myFile.c

-Index: myFile.c

-===

-RCS file: /home/cvs/master/myProject/myFile.c,v

-retrieving revision 1.1

-retrieving revision 1.2

-diff -c -r1.1 -r1.2

-*** myFile.c 8 Aug 2003 21:59:22 -0000 1.1

---- myFile.c 8 Aug 2003 22:20:53 -0000 1.2

-***************

-*** 1,2 ****

-! sdf

-! sdf

-\ No newline at end of file

---- 1,3 ----

-! Hello World!

-!

-!

Introduction to CVS – p.26/38

Actually seeing the changes- Cont.

-c means human readable form

-r 1.1 -r 1.2 means changes need to be made to turn
version 1.1 to version 1.2

myFile.c the file to inspect. Not specifying a file will
list the whole directory matching the criteria.

Introduction to CVS – p.27/38

Example- Adding and Deleting Files

”cvs add myNewFile.c” will schedule a file to be
added.

”cvs commit” will actually submit it to the
repository.

cvs rm myNewFile.c will schedule the file for
removal

cvs commit will actually remove it from future
check outs. You can still see it in the repository.

In order to commit after removing a file, you must
also delete the file from your current directory.

Introduction to CVS – p.28/38

Example- A Conflict

-[devGuy@LinuxRules myProject]$ cvs update

-cvs server: Updating .

-RCS file: /home/cvs/master/myProject/myFile.c,v

-retrieving revision 1.2

-retrieving revision 1.3

-Merging differences between 1.2 and 1.3 into myFile.c

-rcsmerge: warning: conflicts during merge

-cvs server: conflicts found in myFile.c

-C myFile.c

Introduction to CVS – p.29/38

Example- Working Off a Conflict

This is what the file myFile.c will now looks like:
«««< myFile.c

Hello World2!

=======

Hello Conflict World!

»»»> 1.3

You can either edit the file using a text editor, removing
what you don’t like, or use a GUI merger:

Xemacs’s emerge

kdiff3 http://kdiff3.sourceforge.net/)

winmerge http://winmerge.sourceforge.net/)

Introduction to CVS – p.30/38

http://kdiff3.sourceforge.net/
http://winmerge.sourceforge.net/

Example - Working Off a Conflict...

[devGuy@LinuxRules myProject]$ cvs commit -m "solved the conflict"

cvs commit: Examining .

Checking in myFile.c;

/home/cvs/master/myProject/myFile.c,v <– myFile.c

new revision: 1.4; previous revision: 1.3

Done

WARNING:

CVS cannot be relied upon to solve all conflicts.
CVS may merge two files with logically
contradicting changes, if they are phisically located
at different points in the file. (example - if someone
else has changed an API, and you just added a
function which uses this API). In this case, you will
only get a MERGE warning from CVS.

Introduction to CVS – p.31/38

Example - Working Off a Conflict...

WARNING:

In addition, different files may have contradicting
changes. In that case, not even a MERGE warning
will be produced by CVS. This is why the
ChangeLog file is important, and why
communication between developers is irreplacable.

One solution is to agree on an API and every
developer will have his sperate area to make changes
and a change to a common file will be sent outside
cvs to the area owner developer.

Introduction to CVS – p.32/38

EXAMPLE - Tags

Tags are used to draw straight lines connecting
various project files.

A tag may contain version 1.3 for file a and version
1.4 of file b.

A tag can be called by a name in order to retrieve the
information.

cvs tag -r “this-is-the-tag-name-without-spaces”

Important: the Tagging is done on the files currently
in the repository, not on the files in the current
directory.

Introduction to CVS – p.33/38

Branches

Used mostly to release a version and then continue
to the next.

For example, assume you released a branch called
ver1.0, and continued to develop version 2.0. A few
months later a crucial bug-fix is needed for ver1.0.
You can develop the patch on branch - ver1.0 and
not disturb the work on ver2.0.

Using tags, the code of ver1.0 is available.

Using branches, development of the bug fix is still
done under version control.

The users of ver1.0 are not forced to move on to the
next (possibly unstable) version ver2.0 in order to
get a bug-fix.

cvs tag -b -r “this-is-the-tag-name-without-spaces”

Introduction to CVS – p.34/38

Repository and Directories

A repository is really just a directory with CVS
admininstration files.

The modules are just directories in the repository.

Even a sub directory of a project/module can be a
module.

You can publish the module in the admin "modules"
file in $repository/CVSROOT/

A project may be comprised of several modules,
using the modules file.

If you want to delete a module you can do it
manually (though its not recommended).

Introduction to CVS – p.35/38

Renaming a file

Removing the original file and add a new one. This
means the editing history of the new file will not be
available. This is the proper way to avoid messing
up tags and branches information.

Manually rename the file in the repository. Will keep
the history, but will mess up old branch,tag, revision
states, etc.. Information.

Duplicate the original file’s history on a new name
and remove the original file. Thus, you reserve
history and revision information, but add to the old
revision information a virtually non-existing file at
the time. You can however remove tags and rev state
and branch information manually if necessary to
alleviate this problem. Dangerous. Introduction to CVS – p.36/38

Where can I find out more?

Documentation area at http://www.cvshome.org

Comprehensive documentation
http://www.gnu.org/manual/cvs/html_mono/cvs.html

Comparison of various VCSs
http://better-scm.berlios.de/comparison/comparison.html#main
by Shlomi Fish.

Introduction to CVS – p.37/38

http://www.cvshome.org
http://www.gnu.org/manual/cvs/htmlprotect T1	extunderscore mono/cvs.html
http://better-scm.berlios.de/comparison/comparison.html#main

CVSLIBS - a Java Library

CVSLIBS is a library that can be used to reach cvs
servers from you own java application. actually its
an interface with various fuctions to the cvsc library
of the JCVS II project. Also its LGPL’d.

CVSLIBS can be found here:

http://www.technion.ac.il/t̃zahi/

Introduction to CVS – p.38/38

http://www.technion.ac.il/~tzahi/

	Agenda
	CVS - why do I need it? - Ver Control
	CVS - why do I need it? - team work
	CVS - A solution
	CVS - what is it?
	CVS - what is it NOT?
	A CVS Client
	 A CVS Server
	CVS - How does it do that?
	Why shouldn't I use RCS then?
	Graphic CVS Clients
	CVS Basic Work Methods
	CVS Phylosophy
	CVS - Simultanous Check Out
	CVS - Conflicts
	CVS - Solving Conflicts
	CVS Using the Command line Client
	CVS setting ENV variables
	Example: Importing a module
	Example: Checking out a module
	Example: Exporting a module
	Example: Merging Changes
	Example: Reviewing Changes
	Reviewing Changes- Cont
	Actually seeing the changes
	Actually seeing the changes- Cont.
	Example- Adding and Deleting Files
	Example- A Conflict
	Example- Working Off a Conflict
	Example - Working Off a Conflict...
	Example - Working Off a Conflict...
	EXAMPLE - Tags
	Branches
	Repository and Directories
	Renaming a file
	Where can I find out more?
	CVSLIBS - a Java Library

